langchain/docs/extras/modules/data_connection/text_embedding/integrations/minimax.ipynb

148 lines
3.3 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MiniMax\n",
"\n",
"[MiniMax](https://api.minimax.chat/document/guides/embeddings?id=6464722084cdc277dfaa966a) offers an embeddings service.\n",
"\n",
"This example goes over how to use LangChain to interact with MiniMax Inference for text embedding."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:15.397075Z",
"start_time": "2023-05-24T15:13:15.387540Z"
}
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"MINIMAX_GROUP_ID\"] = \"MINIMAX_GROUP_ID\"\n",
"os.environ[\"MINIMAX_API_KEY\"] = \"MINIMAX_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.176956Z",
"start_time": "2023-05-24T15:13:15.399076Z"
}
},
"outputs": [],
"source": [
"from langchain.embeddings import MiniMaxEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.193751Z",
"start_time": "2023-05-24T15:13:17.182053Z"
}
},
"outputs": [],
"source": [
"embeddings = MiniMaxEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.844903Z",
"start_time": "2023-05-24T15:13:17.198751Z"
}
},
"outputs": [],
"source": [
"query_text = \"This is a test query.\"\n",
"query_result = embeddings.embed_query(query_text)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:18.605339Z",
"start_time": "2023-05-24T15:13:17.845906Z"
}
},
"outputs": [],
"source": [
"document_text = \"This is a test document.\"\n",
"document_result = embeddings.embed_documents([document_text])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:18.620432Z",
"start_time": "2023-05-24T15:13:18.608335Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cosine similarity between document and query: 0.1573236279277012\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"query_numpy = np.array(query_result)\n",
"document_numpy = np.array(document_result[0])\n",
"similarity = np.dot(query_numpy, document_numpy) / (\n",
" np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)\n",
")\n",
"print(f\"Cosine similarity between document and query: {similarity}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}