langchain/docs/modules/indexes/retrievers/examples/vespa_retriever.ipynb

124 lines
3.3 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "ce0f17b9",
"metadata": {},
"source": [
"# Vespa retriever\n",
"\n",
"This notebook shows how to use Vespa.ai as a LangChain retriever.\n",
"Vespa.ai is a platform for highly efficient structured text and vector search.\n",
"Please refer to [Vespa.ai](https://vespa.ai) for more information.\n",
"\n",
"In order to create a retriever, we use [pyvespa](https://pyvespa.readthedocs.io/en/latest/index.html) to\n",
"create a connection a Vespa service."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c10dd962",
"metadata": {},
"outputs": [],
"source": [
"from vespa.application import Vespa\n",
"\n",
"vespa_app = Vespa(url=\"https://doc-search.vespa.oath.cloud\")"
]
},
{
"cell_type": "markdown",
"id": "3df4ce53",
"metadata": {},
"source": [
"This creates a connection to a Vespa service, here the Vespa documentation search service.\n",
"Using pyvespa, you can also connect to a\n",
"[Vespa Cloud instance](https://pyvespa.readthedocs.io/en/latest/deploy-vespa-cloud.html)\n",
"or a local\n",
"[Docker instance](https://pyvespa.readthedocs.io/en/latest/deploy-docker.html).\n",
"\n",
"\n",
"After connecting to the service, you can set up the retriever:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ccca1f4",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.retrievers.vespa_retriever import VespaRetriever\n",
"\n",
"vespa_query_body = {\n",
" \"yql\": \"select content from paragraph where userQuery()\",\n",
" \"hits\": 5,\n",
" \"ranking\": \"documentation\",\n",
" \"locale\": \"en-us\"\n",
"}\n",
"vespa_content_field = \"content\"\n",
"retriever = VespaRetriever(vespa_app, vespa_query_body, vespa_content_field)"
]
},
{
"cell_type": "markdown",
"id": "1e7e34e1",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This sets up a LangChain retriever that fetches documents from the Vespa application.\n",
"Here, up to 5 results are retrieved from the `content` field in the `paragraph` document type,\n",
"using `doumentation` as the ranking method. The `userQuery()` is replaced with the actual query\n",
"passed from LangChain.\n",
"\n",
"Please refer to the [pyvespa documentation](https://pyvespa.readthedocs.io/en/latest/getting-started-pyvespa.html#Query)\n",
"for more information.\n",
"\n",
"Now you can return the results and continue using the results in LangChain."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f47a2bfe",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"retriever.get_relevant_documents(\"what is vespa?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}