mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
125 lines
2.7 KiB
Markdown
125 lines
2.7 KiB
Markdown
|
# LangServe 🦜️🔗
|
||
|
|
||
|
## Overview
|
||
|
|
||
|
`LangServe` is a library that allows developers to host their Langchain runnables /
|
||
|
call into them remotely from a runnable interface.
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
For more examples, see the [examples](./examples) directory.
|
||
|
|
||
|
### Server
|
||
|
|
||
|
```python
|
||
|
#!/usr/bin/env python
|
||
|
from fastapi import FastAPI
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.chat_models import ChatAnthropic, ChatOpenAI
|
||
|
from langserve import add_routes
|
||
|
from typing_extensions import TypedDict
|
||
|
|
||
|
|
||
|
app = FastAPI(
|
||
|
title="LangChain Server",
|
||
|
version="1.0",
|
||
|
description="A simple api server using Langchain's Runnable interfaces",
|
||
|
)
|
||
|
|
||
|
|
||
|
# Serve Open AI and Anthropic models
|
||
|
LLMInput = Union[List[Union[SystemMessage, HumanMessage, str]], str]
|
||
|
|
||
|
add_routes(
|
||
|
app,
|
||
|
ChatOpenAI(),
|
||
|
path="/openai",
|
||
|
input_type=LLMInput,
|
||
|
config_keys=[],
|
||
|
)
|
||
|
add_routes(
|
||
|
app,
|
||
|
ChatAnthropic(),
|
||
|
path="/anthropic",
|
||
|
input_type=LLMInput,
|
||
|
config_keys=[],
|
||
|
)
|
||
|
|
||
|
# Serve a joke chain
|
||
|
class ChainInput(TypedDict):
|
||
|
"""The input to the chain."""
|
||
|
|
||
|
topic: str
|
||
|
"""The topic of the joke."""
|
||
|
|
||
|
model = ChatAnthropic()
|
||
|
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
|
||
|
add_routes(app, prompt | model, path="/chain", input_type=ChainInput)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import uvicorn
|
||
|
|
||
|
uvicorn.run(app, host="localhost", port=8000)
|
||
|
```
|
||
|
|
||
|
|
||
|
### Client
|
||
|
|
||
|
```python
|
||
|
|
||
|
from langchain.schema import SystemMessage, HumanMessage
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.schema.runnable import RunnableMap
|
||
|
from langserve import RemoteRunnable
|
||
|
|
||
|
openai = RemoteRunnable("http://localhost:8000/openai/")
|
||
|
anthropic = RemoteRunnable("http://localhost:8000/anthropic/")
|
||
|
joke_chain = RemoteRunnable("http://localhost:8000/chain/")
|
||
|
|
||
|
joke_chain.invoke({"topic": "parrots"})
|
||
|
|
||
|
# or async
|
||
|
await joke_chain.ainvoke({"topic": "parrots"})
|
||
|
|
||
|
prompt = [
|
||
|
SystemMessage(content='Act like either a cat or a parrot.'),
|
||
|
HumanMessage(content='Hello!')
|
||
|
]
|
||
|
|
||
|
# Supports astream
|
||
|
async for msg in anthropic.astream(prompt):
|
||
|
print(msg, end="", flush=True)
|
||
|
|
||
|
prompt = ChatPromptTemplate.from_messages(
|
||
|
[("system", "Tell me a long story about {topic}")]
|
||
|
)
|
||
|
|
||
|
# Can define custom chains
|
||
|
chain = prompt | RunnableMap({
|
||
|
"openai": openai,
|
||
|
"anthropic": anthropic,
|
||
|
})
|
||
|
|
||
|
chain.batch([{ "topic": "parrots" }, { "topic": "cats" }])
|
||
|
```
|
||
|
|
||
|
## Installation
|
||
|
|
||
|
```bash
|
||
|
# pip install langserve[all] -- has not been published to pypi yet
|
||
|
```
|
||
|
|
||
|
or use `client` extra for client code, and `server` extra for server code.
|
||
|
|
||
|
## Features
|
||
|
|
||
|
- Deploy runnables with FastAPI
|
||
|
- Client can use remote runnables almost as if they were local
|
||
|
- Supports async
|
||
|
- Supports batch
|
||
|
- Supports stream
|
||
|
|
||
|
### Limitations
|
||
|
|
||
|
- Chain callbacks cannot be passed from the client to the server
|