mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
|
import os
|
||
|
import time
|
||
|
|
||
|
import openai
|
||
|
import pytest
|
||
|
from dotenv import load_dotenv
|
||
|
|
||
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
||
|
from langchain.vectorstores.azuresearch import AzureSearch
|
||
|
|
||
|
load_dotenv()
|
||
|
|
||
|
# Azure OpenAI settings
|
||
|
openai.api_type = "azure"
|
||
|
openai.api_base = os.getenv("OPENAI_API_BASE", "")
|
||
|
openai.api_version = "2023-05-15"
|
||
|
openai.api_key = os.getenv("OPENAI_API_KEY", "")
|
||
|
model: str = os.getenv("OPENAI_EMBEDDINGS_ENGINE_DOC", "text-embedding-ada-002")
|
||
|
|
||
|
# Vector store settings
|
||
|
vector_store_address: str = os.getenv("AZURE_SEARCH_ENDPOINT", "")
|
||
|
vector_store_password: str = os.getenv("AZURE_SEARCH_ADMIN_KEY", "")
|
||
|
index_name: str = "embeddings-vector-store-test"
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def similarity_search_test() -> None:
|
||
|
"""Test end to end construction and search."""
|
||
|
# Create Embeddings
|
||
|
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
|
||
|
# Create Vector store
|
||
|
vector_store: AzureSearch = AzureSearch(
|
||
|
azure_search_endpoint=vector_store_address,
|
||
|
azure_search_key=vector_store_password,
|
||
|
index_name=index_name,
|
||
|
embedding_function=embeddings.embed_query,
|
||
|
)
|
||
|
# Add texts to vector store and perform a similarity search
|
||
|
vector_store.add_texts(
|
||
|
["Test 1", "Test 2", "Test 3"],
|
||
|
[
|
||
|
{"title": "Title 1", "any_metadata": "Metadata 1"},
|
||
|
{"title": "Title 2", "any_metadata": "Metadata 2"},
|
||
|
{"title": "Title 3", "any_metadata": "Metadata 3"},
|
||
|
],
|
||
|
)
|
||
|
time.sleep(1)
|
||
|
res = vector_store.similarity_search(query="Test 1", k=3)
|
||
|
assert len(res) == 3
|
||
|
|
||
|
|
||
|
def from_text_similarity_search_test() -> None:
|
||
|
"""Test end to end construction and search."""
|
||
|
# Create Embeddings
|
||
|
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
|
||
|
# Create Vector store
|
||
|
vector_store: AzureSearch = AzureSearch.from_texts(
|
||
|
azure_search_endpoint=vector_store_address,
|
||
|
azure_search_key=vector_store_password,
|
||
|
index_name=index_name,
|
||
|
texts=["Test 1", "Test 2", "Test 3"],
|
||
|
embedding=embeddings,
|
||
|
)
|
||
|
time.sleep(1)
|
||
|
# Perform a similarity search
|
||
|
res = vector_store.similarity_search(query="Test 1", k=3)
|
||
|
assert len(res) == 3
|
||
|
|
||
|
|
||
|
def test_semantic_hybrid_search() -> None:
|
||
|
"""Test end to end construction and search."""
|
||
|
# Create Embeddings
|
||
|
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
|
||
|
# Create Vector store
|
||
|
vector_store: AzureSearch = AzureSearch(
|
||
|
azure_search_endpoint=vector_store_address,
|
||
|
azure_search_key=vector_store_password,
|
||
|
index_name=index_name,
|
||
|
embedding_function=embeddings.embed_query,
|
||
|
semantic_configuration_name="default",
|
||
|
)
|
||
|
# Add texts to vector store and perform a semantic hybrid search
|
||
|
vector_store.add_texts(
|
||
|
["Test 1", "Test 2", "Test 3"],
|
||
|
[
|
||
|
{"title": "Title 1", "any_metadata": "Metadata 1"},
|
||
|
{"title": "Title 2", "any_metadata": "Metadata 2"},
|
||
|
{"title": "Title 3", "any_metadata": "Metadata 3"},
|
||
|
],
|
||
|
)
|
||
|
time.sleep(1)
|
||
|
res = vector_store.semantic_hybrid_search(query="What's Azure Search?", k=3)
|
||
|
assert len(res) == 3
|