langchain/libs/community/langchain_community/llms/ipex_llm.py

224 lines
7.0 KiB
Python
Raw Normal View History

import logging
from typing import Any, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra
DEFAULT_MODEL_ID = "gpt2"
logger = logging.getLogger(__name__)
class IpexLLM(LLM):
"""IpexLLM model.
Example:
.. code-block:: python
from langchain_community.llms import IpexLLM
llm = IpexLLM.from_model_id(model_id="THUDM/chatglm-6b")
"""
model_id: str = DEFAULT_MODEL_ID
"""Model name or model path to use."""
model_kwargs: Optional[dict] = None
"""Keyword arguments passed to the model."""
model: Any #: :meta private:
"""IpexLLM model."""
tokenizer: Any #: :meta private:
"""Huggingface tokenizer model."""
streaming: bool = True
"""Whether to stream the results, token by token."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@classmethod
def from_model_id(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""
Construct object from model_id
Args:
model_id: Path for the huggingface repo id to be downloaded or
the huggingface checkpoint folder.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of IpexLLM.
"""
try:
from ipex_llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ValueError(
"Could not import ipex-llm or transformers. "
"Please install it with `pip install --pre --upgrade ipex-llm[all]`."
)
_model_kwargs = model_kwargs or {}
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
except Exception:
model = AutoModel.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
@classmethod
def from_model_id_low_bit(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""
Construct low_bit object from model_id
Args:
model_id: Path for the ipex-llm transformers low-bit model folder.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of IpexLLM.
"""
try:
from ipex_llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ValueError(
"Could not import ipex-llm or transformers. "
"Please install it with `pip install --pre --upgrade ipex-llm[all]`."
)
_model_kwargs = model_kwargs or {}
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.load_low_bit(model_id, **_model_kwargs)
except Exception:
model = AutoModel.load_low_bit(model_id, **_model_kwargs)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
}
@property
def _llm_type(self) -> str:
return "ipex-llm"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.streaming:
from transformers import TextStreamer
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
streamer = TextStreamer(
self.tokenizer, skip_prompt=True, skip_special_tokens=True
)
if stop is not None:
from transformers.generation.stopping_criteria import (
StoppingCriteriaList,
)
from transformers.tools.agents import StopSequenceCriteria
# stop generation when stop words are encountered
# TODO: stop generation when the following one is stop word
stopping_criteria = StoppingCriteriaList(
[StopSequenceCriteria(stop, self.tokenizer)]
)
else:
stopping_criteria = None
output = self.model.generate(
input_ids,
streamer=streamer,
stopping_criteria=stopping_criteria,
**kwargs,
)
text = self.tokenizer.decode(output[0], skip_special_tokens=True)
return text
else:
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
if stop is not None:
from transformers.generation.stopping_criteria import (
StoppingCriteriaList,
)
from transformers.tools.agents import StopSequenceCriteria
stopping_criteria = StoppingCriteriaList(
[StopSequenceCriteria(stop, self.tokenizer)]
)
else:
stopping_criteria = None
output = self.model.generate(
input_ids, stopping_criteria=stopping_criteria, **kwargs
)
text = self.tokenizer.decode(output[0], skip_special_tokens=True)[
len(prompt) :
]
return text