langchain/libs/experimental/langchain_experimental/plan_and_execute/schema.py

47 lines
1.1 KiB
Python
Raw Normal View History

2023-05-10 04:07:56 +00:00
from abc import abstractmethod
from typing import List, Tuple
from langchain.schema import BaseOutputParser
2023-07-21 17:36:28 +00:00
from pydantic import BaseModel, Field
2023-05-10 04:07:56 +00:00
class Step(BaseModel):
value: str
class Plan(BaseModel):
steps: List[Step]
class StepResponse(BaseModel):
response: str
class BaseStepContainer(BaseModel):
@abstractmethod
def add_step(self, step: Step, step_response: StepResponse) -> None:
"""Add step and step response to the container."""
@abstractmethod
def get_final_response(self) -> str:
"""Return the final response based on steps taken."""
class ListStepContainer(BaseStepContainer):
2023-05-10 04:07:56 +00:00
steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list)
def add_step(self, step: Step, step_response: StepResponse) -> None:
self.steps.append((step, step_response))
def get_steps(self) -> List[Tuple[Step, StepResponse]]:
return self.steps
def get_final_response(self) -> str:
return self.steps[-1][1].response
class PlanOutputParser(BaseOutputParser):
@abstractmethod
def parse(self, text: str) -> Plan:
"""Parse into a plan."""