2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import LLM
|
community[patch]: Upgrade pydantic extra (#25185)
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
2024-08-08 17:20:39 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Ignoring type because below is valid pydantic code
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
community[patch]: Upgrade pydantic extra (#25185)
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
2024-08-08 17:20:39 +00:00
|
|
|
class Params(BaseModel, extra="allow"): # type: ignore[call-arg]
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Parameters for the MLflow AI Gateway LLM."""
|
|
|
|
|
|
|
|
temperature: float = 0.0
|
|
|
|
candidate_count: int = 1
|
|
|
|
"""The number of candidates to return."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
|
|
class MlflowAIGateway(LLM):
|
2024-04-11 20:23:27 +00:00
|
|
|
"""MLflow AI Gateway LLMs.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
To use, you should have the ``mlflow[gateway]`` python package installed.
|
|
|
|
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import MlflowAIGateway
|
|
|
|
|
|
|
|
completions = MlflowAIGateway(
|
|
|
|
gateway_uri="<your-mlflow-ai-gateway-uri>",
|
|
|
|
route="<your-mlflow-ai-gateway-completions-route>",
|
|
|
|
params={
|
|
|
|
"temperature": 0.1
|
|
|
|
}
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
|
|
|
|
route: str
|
|
|
|
gateway_uri: Optional[str] = None
|
|
|
|
params: Optional[Params] = None
|
|
|
|
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
|
|
warnings.warn(
|
|
|
|
"`MlflowAIGateway` is deprecated. Use `Mlflow` or `Databricks` instead.",
|
|
|
|
DeprecationWarning,
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
import mlflow.gateway
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import `mlflow.gateway` module. "
|
|
|
|
"Please install it with `pip install mlflow[gateway]`."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
if self.gateway_uri:
|
|
|
|
mlflow.gateway.set_gateway_uri(self.gateway_uri)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
params: Dict[str, Any] = {
|
|
|
|
"gateway_uri": self.gateway_uri,
|
|
|
|
"route": self.route,
|
|
|
|
**(self.params.dict() if self.params else {}),
|
|
|
|
}
|
|
|
|
return params
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
return self._default_params
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
try:
|
|
|
|
import mlflow.gateway
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import `mlflow.gateway` module. "
|
|
|
|
"Please install it with `pip install mlflow[gateway]`."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
data: Dict[str, Any] = {
|
|
|
|
"prompt": prompt,
|
|
|
|
**(self.params.dict() if self.params else {}),
|
|
|
|
}
|
|
|
|
if s := (stop or (self.params.stop if self.params else None)):
|
|
|
|
data["stop"] = s
|
|
|
|
resp = mlflow.gateway.query(self.route, data=data)
|
|
|
|
return resp["candidates"][0]["text"]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
return "mlflow-ai-gateway"
|