2023-12-11 21:53:30 +00:00
|
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
|
|
|
|
import requests
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import LLM
|
community[patch]: Upgrade pydantic extra (#25185)
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
2024-08-08 17:20:39 +00:00
|
|
|
from langchain_core.pydantic_v1 import SecretStr, root_validator
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
|
|
|
|
|
|
class ForefrontAI(LLM):
|
|
|
|
"""ForefrontAI large language models.
|
|
|
|
|
|
|
|
To use, you should have the environment variable ``FOREFRONTAI_API_KEY``
|
|
|
|
set with your API key.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import ForefrontAI
|
|
|
|
forefrontai = ForefrontAI(endpoint_url="")
|
|
|
|
"""
|
|
|
|
|
|
|
|
endpoint_url: str = ""
|
|
|
|
"""Model name to use."""
|
|
|
|
|
|
|
|
temperature: float = 0.7
|
|
|
|
"""What sampling temperature to use."""
|
|
|
|
|
|
|
|
length: int = 256
|
|
|
|
"""The maximum number of tokens to generate in the completion."""
|
|
|
|
|
|
|
|
top_p: float = 1.0
|
|
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
|
|
|
|
top_k: int = 40
|
|
|
|
"""The number of highest probability vocabulary tokens to
|
|
|
|
keep for top-k-filtering."""
|
|
|
|
|
|
|
|
repetition_penalty: int = 1
|
|
|
|
"""Penalizes repeated tokens according to frequency."""
|
|
|
|
|
|
|
|
forefrontai_api_key: SecretStr
|
|
|
|
|
|
|
|
base_url: Optional[str] = None
|
|
|
|
"""Base url to use, if None decides based on model name."""
|
|
|
|
|
|
|
|
class Config:
|
community[patch]: Upgrade pydantic extra (#25185)
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
2024-08-08 17:20:39 +00:00
|
|
|
extra = "forbid"
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key exists in environment."""
|
|
|
|
values["forefrontai_api_key"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(values, "forefrontai_api_key", "FOREFRONTAI_API_KEY")
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the default parameters for calling ForefrontAI API."""
|
|
|
|
return {
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"length": self.length,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
"top_k": self.top_k,
|
|
|
|
"repetition_penalty": self.repetition_penalty,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
return {**{"endpoint_url": self.endpoint_url}, **self._default_params}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "forefrontai"
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
"""Call out to ForefrontAI's complete endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to pass into the model.
|
|
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The string generated by the model.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
response = ForefrontAI("Tell me a joke.")
|
|
|
|
"""
|
|
|
|
auth_value = f"Bearer {self.forefrontai_api_key.get_secret_value()}"
|
|
|
|
response = requests.post(
|
|
|
|
url=self.endpoint_url,
|
|
|
|
headers={
|
|
|
|
"Authorization": auth_value,
|
|
|
|
"Content-Type": "application/json",
|
|
|
|
},
|
|
|
|
json={"text": prompt, **self._default_params, **kwargs},
|
|
|
|
)
|
|
|
|
response_json = response.json()
|
|
|
|
text = response_json["result"][0]["completion"]
|
|
|
|
if stop is not None:
|
|
|
|
# I believe this is required since the stop tokens
|
|
|
|
# are not enforced by the model parameters
|
|
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
return text
|