langchain/docs/modules/models/chat/getting_started.ipynb

412 lines
11 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"This notebook covers how to get started with chat models. The interface is based around messages rather than raw text."
]
},
{
"cell_type": "code",
2023-03-19 17:32:31 +00:00
"execution_count": 1,
"id": "522686de",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain import PromptTemplate, LLMChain\n",
"from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" AIMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage\n",
")"
]
},
{
"cell_type": "code",
2023-03-19 17:32:31 +00:00
"execution_count": 2,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatOpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "bbaec18e-3684-4eef-955f-c1cec8bf765d",
"metadata": {},
"source": [
"You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`"
]
},
{
"cell_type": "code",
2023-03-19 17:32:31 +00:00
"execution_count": 3,
"id": "76a6e7b0-e927-4bfb-a414-1332a4149106",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime programmer.\", additional_kwargs={})"
]
},
2023-03-19 17:32:31 +00:00
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat([HumanMessage(content=\"Translate this sentence from English to French. I love programming.\")])"
]
},
{
"cell_type": "markdown",
"id": "a62153d4-1211-411b-a493-3febfe446ae0",
"metadata": {},
"source": [
"OpenAI's chat model supports multiple messages as input. See [here](https://platform.openai.com/docs/guides/chat/chat-vs-completions) for more information. Here is an example of sending a system and user message to the chat model:"
]
},
{
"cell_type": "code",
2023-03-19 17:32:31 +00:00
"execution_count": 4,
"id": "ce16ad78-8e6f-48cd-954e-98be75eb5836",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime programmer.\", additional_kwargs={})"
]
},
2023-03-19 17:32:31 +00:00
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n",
" HumanMessage(content=\"I love programming.\")\n",
"]\n",
"chat(messages)"
]
},
{
"cell_type": "markdown",
"id": "36dc8d7e-bd25-47ac-8c1b-60e3422603d3",
"metadata": {},
"source": [
"You can go one step further and generate completions for multiple sets of messages using `generate`. This returns an `LLMResult` with an additional `message` parameter."
]
},
{
"cell_type": "code",
2023-03-19 17:32:31 +00:00
"execution_count": 5,
"id": "2b21fc52-74b6-4950-ab78-45d12c68fb4d",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[ChatGeneration(text=\"J'aime programmer.\", generation_info=None, message=AIMessage(content=\"J'aime programmer.\", additional_kwargs={}))], [ChatGeneration(text=\"J'aime l'intelligence artificielle.\", generation_info=None, message=AIMessage(content=\"J'aime l'intelligence artificielle.\", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})"
]
},
2023-03-19 17:32:31 +00:00
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch_messages = [\n",
" [\n",
" SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n",
" HumanMessage(content=\"I love programming.\")\n",
" ],\n",
" [\n",
" SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n",
" HumanMessage(content=\"I love artificial intelligence.\")\n",
" ],\n",
"]\n",
2023-03-19 17:32:31 +00:00
"result = chat.generate(batch_messages)\n",
"result"
]
},
{
"cell_type": "markdown",
"id": "2960f50f",
"metadata": {},
"source": [
"You can recover things like token usage from this LLMResult"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a6186bee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'token_usage': {'prompt_tokens': 57,\n",
" 'completion_tokens': 20,\n",
" 'total_tokens': 77}}"
2023-03-19 17:32:31 +00:00
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result.llm_output"
]
},
{
"cell_type": "markdown",
"id": "b10b00ef-f373-4bc3-8302-2dfc28033734",
"metadata": {},
"source": [
"## PromptTemplates"
]
},
{
"cell_type": "markdown",
"id": "778f912a-66ea-4a5d-b3de-6c7db4baba26",
"metadata": {},
"source": [
"You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
"\n",
"For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "180c5cc8",
"metadata": {},
"outputs": [],
"source": [
"template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
"human_template=\"{text}\"\n",
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fbb043e6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
"\n",
"# get a chat completion from the formatted messages\n",
"chat(chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages())"
]
},
{
"cell_type": "markdown",
"id": "e28b98da",
"metadata": {},
"source": [
"If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d5b1ab1c",
"metadata": {},
"outputs": [],
"source": [
"prompt=PromptTemplate(\n",
" template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" input_variables=[\"input_language\", \"output_language\"],\n",
")\n",
"system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)"
]
},
{
"cell_type": "markdown",
"id": "92af0bba",
"metadata": {},
"source": [
"## LLMChain\n",
"You can use the existing LLMChain in a very similar way to before - provide a prompt and a model."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f2cbfe3d",
"metadata": {},
"outputs": [],
"source": [
"chain = LLMChain(llm=chat, prompt=chat_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "268543b1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"J'adore la programmation.\""
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")"
]
},
{
"cell_type": "markdown",
"id": "eb779f3f",
"metadata": {},
"source": [
"## Streaming\n",
"\n",
"Streaming is supported for `ChatOpenAI` through callback handling."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "509181be",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Verse 1:\n",
"Bubbles rising to the top\n",
"A refreshing drink that never stops\n",
"Clear and crisp, it's pure delight\n",
"A taste that's sure to excite\n",
"\n",
"Chorus:\n",
"Sparkling water, oh so fine\n",
"A drink that's always on my mind\n",
"With every sip, I feel alive\n",
"Sparkling water, you're my vibe\n",
"\n",
"Verse 2:\n",
"No sugar, no calories, just pure bliss\n",
"A drink that's hard to resist\n",
"It's the perfect way to quench my thirst\n",
"A drink that always comes first\n",
"\n",
"Chorus:\n",
"Sparkling water, oh so fine\n",
"A drink that's always on my mind\n",
"With every sip, I feel alive\n",
"Sparkling water, you're my vibe\n",
"\n",
"Bridge:\n",
"From the mountains to the sea\n",
"Sparkling water, you're the key\n",
"To a healthy life, a happy soul\n",
"A drink that makes me feel whole\n",
"\n",
"Chorus:\n",
"Sparkling water, oh so fine\n",
"A drink that's always on my mind\n",
"With every sip, I feel alive\n",
"Sparkling water, you're my vibe\n",
"\n",
"Outro:\n",
"Sparkling water, you're the one\n",
"A drink that's always so much fun\n",
"I'll never let you go, my friend\n",
"Sparkling"
]
}
],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)\n",
"resp = chat([HumanMessage(content=\"Write me a song about sparkling water.\")])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c095285d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}