langchain/docs/extras/integrations/vectorstores/pinecone.ipynb

244 lines
6.2 KiB
Plaintext
Raw Normal View History

2023-02-20 07:14:50 +00:00
{
"cells": [
{
"attachments": {},
2023-02-20 07:14:50 +00:00
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# Pinecone\n",
"\n",
">[Pinecone](https://docs.pinecone.io/docs/overview) is a vector database with broad functionality.\n",
"\n",
"This notebook shows how to use functionality related to the `Pinecone` vector database.\n",
"\n",
"To use Pinecone, you must have an API key. \n",
"Here are the [installation instructions](https://docs.pinecone.io/docs/quickstart)."
2023-02-20 07:14:50 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4c41cad-08ef-4f72-a545-2151e4598efe",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install pinecone-client openai tiktoken langchain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1e38361-c1fe-4ac6-86e9-c90ebaf7ae87",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"PINECONE_API_KEY\"] = getpass.getpass(\"Pinecone API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02a536e0-d603-4d79-b18b-1ed562977b40",
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"PINECONE_ENV\"] = getpass.getpass(\"Pinecone Environment:\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "320af802-9271-46ee-948f-d2453933d44b",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffea66e4-bc23-46a9-9580-b348dfe7b7a7",
2023-02-20 07:14:50 +00:00
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aac9563e",
"metadata": {
"tags": []
},
"outputs": [],
2023-02-20 07:14:50 +00:00
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
2023-02-20 07:14:50 +00:00
"id": "a3c3999a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
2023-02-20 07:14:50 +00:00
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"import pinecone\n",
2023-02-20 07:14:50 +00:00
"\n",
"# initialize pinecone\n",
"pinecone.init(\n",
" api_key=os.getenv(\"PINECONE_API_KEY\"), # find at app.pinecone.io\n",
" environment=os.getenv(\"PINECONE_ENV\"), # next to api key in console\n",
2023-02-20 07:14:50 +00:00
")\n",
"\n",
"index_name = \"langchain-demo\"\n",
"\n",
"# First, check if our index already exists. If it doesn't, we create it\n",
"if index_name not in pinecone.list_indexes():\n",
" # we create a new index\n",
" pinecone.create_index(\n",
" name=index_name,\n",
" metric='cosine',\n",
" dimension=1536 \n",
")\n",
"# The OpenAI embedding model `text-embedding-ada-002 uses 1536 dimensions`\n",
2023-02-20 07:14:50 +00:00
"docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)\n",
"\n",
"# if you already have an index, you can load it like this\n",
"# docsearch = Pinecone.from_existing_index(index_name, embeddings)\n",
"\n",
2023-02-20 07:14:50 +00:00
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c608226",
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].page_content)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "86a4b96b",
"metadata": {},
"source": [
"### Adding More Text to an Existing Index\n",
"\n",
"More text can embedded and upserted to an existing Pinecone index using the `add_texts` function\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "38a7a60e",
"metadata": {},
"outputs": [],
"source": [
"index = pinecone.Index(\"langchain-demo\")\n",
"vectorstore = Pinecone(index, embeddings.embed_query, \"text\")\n",
"\n",
"vectorstore.add_texts(\"More text!\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d46d1452",
"metadata": {},
"source": [
"### Maximal Marginal Relevance Searches\n",
"\n",
"In addition to using similarity search in the retriever object, you can also use `mmr` as retriever.\n"
]
},
2023-02-20 07:14:50 +00:00
{
"cell_type": "code",
"execution_count": null,
"id": "a359ed74",
"metadata": {},
"outputs": [],
"source": [
"retriever = docsearch.as_retriever(search_type=\"mmr\")\n",
"matched_docs = retriever.get_relevant_documents(query)\n",
"for i, d in enumerate(matched_docs):\n",
" print(f\"\\n## Document {i}\\n\")\n",
" print(d.page_content)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7c477287",
"metadata": {},
"source": [
"Or use `max_marginal_relevance_search` directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ca82740",
"metadata": {},
"outputs": [],
"source": [
"found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)\n",
"for i, doc in enumerate(found_docs):\n",
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
]
2023-02-20 07:14:50 +00:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
2023-02-20 07:14:50 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}