langchain/docs/extras/integrations/vectorstores/myscale.ipynb

288 lines
7.2 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# MyScale\n",
"\n",
">[MyScale](https://docs.myscale.com/en/overview/) is a cloud-based database optimized for AI applications and solutions, built on the open-source [ClickHouse](https://github.com/ClickHouse/ClickHouse). \n",
"\n",
"This notebook shows how to use functionality related to the `MyScale` vector database."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "43ead5d5-2c1f-4dce-a69a-cb00e4f9d6f0",
"metadata": {},
"source": [
"## Setting up envrionments"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7dccc580-8270-4714-ad61-f79783dd6eea",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install clickhouse-connect"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "15a1d477-9cdb-4d82-b019-96951ecb2b72",
"metadata": {},
"source": [
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91003ea5-0c8c-436c-a5de-aaeaeef2f458",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a9d16fa3",
"metadata": {},
"source": [
"There are two ways to set up parameters for myscale index.\n",
"\n",
"1. Environment Variables\n",
"\n",
" Before you run the app, please set the environment variable with `export`:\n",
" `export MYSCALE_HOST='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ...`\n",
"\n",
" You can easily find your account, password and other info on our SaaS. For details please refer to [this document](https://docs.myscale.com/en/cluster-management/)\n",
"\n",
" Every attributes under `MyScaleSettings` can be set with prefix `MYSCALE_` and is case insensitive.\n",
"\n",
"2. Create `MyScaleSettings` object with parameters\n",
"\n",
"\n",
" ```python\n",
" from langchain.vectorstores import MyScale, MyScaleSettings\n",
" config = MyScaleSetting(host=\"<your-backend-url>\", port=8443, ...)\n",
" index = MyScale(embedding_function, config)\n",
" index.add_documents(...)\n",
" ```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aac9563e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import MyScale\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3c3999a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"for d in docs:\n",
" d.metadata = {\"some\": \"metadata\"}\n",
"docsearch = MyScale.from_documents(docs, embeddings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c608226",
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].page_content)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e3a8b105",
"metadata": {},
"source": [
"## Get connection info and data schema"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69996818",
"metadata": {},
"outputs": [],
"source": [
"print(str(docsearch))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f59360c0",
"metadata": {},
"source": [
"## Filtering\n",
"\n",
"You can have direct access to myscale SQL where statement. You can write `WHERE` clause following standard SQL.\n",
"\n",
"**NOTE**: Please be aware of SQL injection, this interface must not be directly called by end-user.\n",
"\n",
"If you custimized your `column_map` under your setting, you search with filter like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "232055f6",
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import MyScale, MyScaleSettings\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"for i, d in enumerate(docs):\n",
" d.metadata = {\"doc_id\": i}\n",
"\n",
"docsearch = MyScale.from_documents(docs, embeddings)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8d867b05",
"metadata": {},
"source": [
"### Similarity search with score"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9ec25cc5",
"metadata": {},
"source": [
"The returned distance score is cosine distance. Therefore, a lower score is better."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddbcee77",
"metadata": {},
"outputs": [],
"source": [
"meta = docsearch.metadata_column\n",
"output = docsearch.similarity_search_with_relevance_scores(\n",
" \"What did the president say about Ketanji Brown Jackson?\",\n",
" k=4,\n",
" where_str=f\"{meta}.doc_id<10\",\n",
")\n",
"for d, dist in output:\n",
" print(dist, d.metadata, d.page_content[:20] + \"...\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a359ed74",
"metadata": {},
"source": [
"## Deleting your data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb6a9d36",
"metadata": {},
"outputs": [],
"source": [
"docsearch.drop()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48dbd8e0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}