2023-05-04 04:21:58 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
2023-05-17 22:29:22 +00:00
"# kNN\n",
"\n",
">In statistics, the [k-nearest neighbors algorithm (k-NN)](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression.\n",
2023-05-04 04:21:58 +00:00
"\n",
"This notebook goes over how to use a retriever that under the hood uses an kNN.\n",
"\n",
2023-06-16 18:52:56 +00:00
"Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.html"
2023-05-04 04:21:58 +00:00
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "393ac030",
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers import KNNRetriever\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "98b1c017",
"metadata": {},
"outputs": [],
"source": [
2023-06-16 18:52:56 +00:00
"retriever = KNNRetriever.from_texts(\n",
" [\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"], OpenAIEmbeddings()\n",
")"
2023-05-04 04:21:58 +00:00
]
},
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c0455218",
"metadata": {},
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7dfa5c29",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='bar', metadata={})]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2023-05-17 22:29:22 +00:00
"version": "3.10.6"
2023-05-04 04:21:58 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}