langchain/docs/extras/integrations/document_loaders/apify_dataset.ipynb

184 lines
5.0 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Apify Dataset\n",
"\n",
">[Apify Dataset](https://docs.apify.com/platform/storage/dataset) is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of [Apify Actors](https://apify.com/store)—serverless cloud programs for varius web scraping, crawling, and data extraction use cases.\n",
"\n",
"This notebook shows how to load Apify datasets to LangChain.\n",
"\n",
"\n",
"## Prerequisites\n",
"\n",
2023-07-25 04:20:32 +00:00
"You need to have an existing dataset on the Apify platform. If you don't have one, please first check out [this notebook](/docs/integrations/tools/apify.html) on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!pip install apify-client"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, import `ApifyDatasetLoader` into your source code:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import ApifyDatasetLoader\n",
"from langchain.document_loaders.base import Document"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then provide a function that maps Apify dataset record fields to LangChain `Document` format.\n",
"\n",
"For example, if your dataset items are structured like this:\n",
"\n",
"```json\n",
"{\n",
" \"url\": \"https://apify.com\",\n",
" \"text\": \"Apify is the best web scraping and automation platform.\"\n",
"}\n",
"```\n",
"\n",
"The mapping function in the code below will convert them to LangChain `Document` format, so that you can use them further with any LLM model (e.g. for question answering)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
" dataset_id=\"your-dataset-id\",\n",
" dataset_mapping_function=lambda dataset_item: Document(\n",
" page_content=dataset_item[\"text\"], metadata={\"source\": dataset_item[\"url\"]}\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## An example with question answering\n",
"\n",
"In this example, we use data from a dataset to answer a question."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore.document import Document\n",
"from langchain.document_loaders import ApifyDatasetLoader\n",
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
" dataset_id=\"your-dataset-id\",\n",
" dataset_mapping_function=lambda item: Document(\n",
" page_content=item[\"text\"] or \"\", metadata={\"source\": item[\"url\"]}\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index = VectorstoreIndexCreator().from_loaders([loader])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is Apify?\"\n",
"result = index.query_with_sources(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform.\n",
"\n",
"https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples\n"
]
}
],
"source": [
"print(result[\"answer\"])\n",
"print(result[\"sources\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2023-06-20 21:06:50 +00:00
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}