mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
210 lines
7.9 KiB
Python
210 lines
7.9 KiB
Python
|
import asyncio
|
||
|
import importlib
|
||
|
import warnings
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
|
||
|
ModerationToxicityError,
|
||
|
)
|
||
|
|
||
|
|
||
|
class ComprehendToxicity:
|
||
|
def __init__(
|
||
|
self,
|
||
|
client: Any,
|
||
|
callback: Optional[Any] = None,
|
||
|
unique_id: Optional[str] = None,
|
||
|
chain_id: Optional[str] = None,
|
||
|
) -> None:
|
||
|
self.client = client
|
||
|
self.moderation_beacon = {
|
||
|
"moderation_chain_id": chain_id,
|
||
|
"moderation_type": "Toxicity",
|
||
|
"moderation_status": "LABELS_NOT_FOUND",
|
||
|
}
|
||
|
self.callback = callback
|
||
|
self.unique_id = unique_id
|
||
|
|
||
|
def _toxicity_init_validate(self, max_size: int) -> Any:
|
||
|
"""
|
||
|
Validate and initialize toxicity processing configuration.
|
||
|
|
||
|
Args:
|
||
|
max_size (int): Maximum sentence size defined in the configuration object.
|
||
|
|
||
|
Raises:
|
||
|
Exception: If the maximum sentence size exceeds the 5KB limit.
|
||
|
|
||
|
Note:
|
||
|
This function ensures that the NLTK punkt tokenizer is downloaded if not
|
||
|
already present.
|
||
|
|
||
|
Returns:
|
||
|
None
|
||
|
"""
|
||
|
if max_size > 1024 * 5:
|
||
|
raise Exception("The sentence length should not exceed 5KB.")
|
||
|
try:
|
||
|
nltk = importlib.import_module("nltk")
|
||
|
nltk.data.find("tokenizers/punkt")
|
||
|
return nltk
|
||
|
except ImportError:
|
||
|
raise ModuleNotFoundError(
|
||
|
"Could not import nltk python package. "
|
||
|
"Please install it with `pip install nltk`."
|
||
|
)
|
||
|
except LookupError:
|
||
|
nltk.download("punkt")
|
||
|
|
||
|
def _split_paragraph(
|
||
|
self, prompt_value: str, max_size: int = 1024 * 4
|
||
|
) -> List[List[str]]:
|
||
|
"""
|
||
|
Split a paragraph into chunks of sentences, respecting the maximum size limit.
|
||
|
|
||
|
Args:
|
||
|
paragraph (str): The input paragraph to be split into chunks
|
||
|
max_size (int, optional): The maximum size limit in bytes for each chunk
|
||
|
Defaults to 1024.
|
||
|
|
||
|
Returns:
|
||
|
List[List[str]]: A list of chunks, where each chunk is a list of sentences
|
||
|
|
||
|
Note:
|
||
|
This function validates the maximum sentence size based on service limits
|
||
|
using the 'toxicity_init_validate' function. It uses the NLTK sentence
|
||
|
tokenizer to split the paragraph into sentences.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# validate max. sentence size based on Service limits
|
||
|
nltk = self._toxicity_init_validate(max_size)
|
||
|
|
||
|
sentences = nltk.sent_tokenize(prompt_value)
|
||
|
|
||
|
chunks = []
|
||
|
current_chunk = [] # type: ignore
|
||
|
current_size = 0
|
||
|
|
||
|
for sentence in sentences:
|
||
|
sentence_size = len(sentence.encode("utf-8"))
|
||
|
|
||
|
# If adding a new sentence exceeds max_size or
|
||
|
# current_chunk has 10 sentences, start a new chunk
|
||
|
if (current_size + sentence_size > max_size) or (len(current_chunk) >= 10):
|
||
|
if current_chunk: # Avoid appending empty chunks
|
||
|
chunks.append(current_chunk)
|
||
|
current_chunk = []
|
||
|
current_size = 0
|
||
|
|
||
|
current_chunk.append(sentence)
|
||
|
current_size += sentence_size
|
||
|
|
||
|
# Add any remaining sentences
|
||
|
if current_chunk:
|
||
|
chunks.append(current_chunk)
|
||
|
|
||
|
return chunks
|
||
|
|
||
|
def validate(
|
||
|
self, prompt_value: str, config: Optional[Dict[str, Any]] = None
|
||
|
) -> str:
|
||
|
"""
|
||
|
Check the toxicity of a given text prompt using AWS Comprehend service
|
||
|
and apply actions based on configuration.
|
||
|
|
||
|
Args:
|
||
|
prompt_value (str): The text content to be checked for toxicity.
|
||
|
config (Dict[str, Any]): Configuration for toxicity checks and actions.
|
||
|
|
||
|
Returns:
|
||
|
str: The original prompt_value if allowed or no toxicity found.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the prompt contains toxic labels and cannot be
|
||
|
processed based on the configuration.
|
||
|
"""
|
||
|
|
||
|
chunks = self._split_paragraph(prompt_value=prompt_value)
|
||
|
for sentence_list in chunks:
|
||
|
segments = [{"Text": sentence} for sentence in sentence_list]
|
||
|
response = self.client.detect_toxic_content(
|
||
|
TextSegments=segments, LanguageCode="en"
|
||
|
)
|
||
|
if self.callback and self.callback.toxicity_callback:
|
||
|
self.moderation_beacon["moderation_input"] = segments # type: ignore
|
||
|
self.moderation_beacon["moderation_output"] = response
|
||
|
|
||
|
if config:
|
||
|
from langchain_experimental.comprehend_moderation.base_moderation_enums import ( # noqa: E501
|
||
|
BaseModerationActions,
|
||
|
)
|
||
|
|
||
|
toxicity_found = False
|
||
|
action = config.get("action", BaseModerationActions.STOP)
|
||
|
if action not in [
|
||
|
BaseModerationActions.STOP,
|
||
|
BaseModerationActions.ALLOW,
|
||
|
]:
|
||
|
raise ValueError("Action can either be stop or allow")
|
||
|
|
||
|
threshold = config.get("threshold", 0.5) if config else 0.5
|
||
|
toxicity_labels = config.get("labels", []) if config else []
|
||
|
|
||
|
if action == BaseModerationActions.STOP:
|
||
|
for item in response["ResultList"]:
|
||
|
for label in item["Labels"]:
|
||
|
if (
|
||
|
label
|
||
|
and (
|
||
|
not toxicity_labels
|
||
|
or label["Name"] in toxicity_labels
|
||
|
)
|
||
|
and label["Score"] >= threshold
|
||
|
):
|
||
|
toxicity_found = True
|
||
|
break
|
||
|
|
||
|
if action == BaseModerationActions.ALLOW:
|
||
|
if not toxicity_labels:
|
||
|
warnings.warn(
|
||
|
"You have allowed toxic content without specifying "
|
||
|
"any toxicity labels."
|
||
|
)
|
||
|
else:
|
||
|
for item in response["ResultList"]:
|
||
|
for label in item["Labels"]:
|
||
|
if (
|
||
|
label["Name"] in toxicity_labels
|
||
|
and label["Score"] >= threshold
|
||
|
):
|
||
|
toxicity_found = True
|
||
|
break
|
||
|
|
||
|
if self.callback and self.callback.toxicity_callback:
|
||
|
if toxicity_found:
|
||
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
||
|
asyncio.create_task(
|
||
|
self.callback.on_after_toxicity(
|
||
|
self.moderation_beacon, self.unique_id
|
||
|
)
|
||
|
)
|
||
|
if toxicity_found:
|
||
|
raise ModerationToxicityError
|
||
|
else:
|
||
|
if response["ResultList"]:
|
||
|
detected_toxic_labels = list()
|
||
|
for item in response["ResultList"]:
|
||
|
detected_toxic_labels.extend(item["Labels"])
|
||
|
if any(item["Score"] >= 0.5 for item in detected_toxic_labels):
|
||
|
if self.callback and self.callback.toxicity_callback:
|
||
|
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
|
||
|
asyncio.create_task(
|
||
|
self.callback.on_after_toxicity(
|
||
|
self.moderation_beacon, self.unique_id
|
||
|
)
|
||
|
)
|
||
|
raise ModerationToxicityError
|
||
|
|
||
|
return prompt_value
|