langchain/docs/modules/indexes/document_loaders/examples/telegram.ipynb

85 lines
1.8 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "33205b12",
"metadata": {},
"source": [
"# Telegram\n",
"\n",
"This notebook covers how to load data from Telegram into a format that can be ingested into LangChain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "90b69c94",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TelegramChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "13deb0f5",
"metadata": {},
"outputs": [],
"source": [
"loader = TelegramChatLoader(\"example_data/telegram.json\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9ccc1e2f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content=\"Henry on 2020-01-01T00:00:02: It's 2020...\\n\\nHenry on 2020-01-01T00:00:04: Fireworks!\\n\\nGrace 🧤 ðŸ\\x8d on 2020-01-01T00:00:05: You're a minute late!\\n\\n\", lookup_str='', metadata={'source': 'example_data/telegram.json'}, lookup_index=0)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e64cac2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}