2023-03-27 02:49:46 +00:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"id": "eec4efda",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
2023-09-08 02:53:33 +00:00
|
|
|
"# Self Hosted\n",
|
|
|
|
"Let's load the `SelfHostedEmbeddings`, `SelfHostedHuggingFaceEmbeddings`, and `SelfHostedHuggingFaceInstructEmbeddings` classes."
|
2023-03-27 02:49:46 +00:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "d338722a",
|
|
|
|
"metadata": {
|
|
|
|
"scrolled": true
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"from langchain.embeddings import (\n",
|
|
|
|
" SelfHostedEmbeddings,\n",
|
|
|
|
" SelfHostedHuggingFaceEmbeddings,\n",
|
|
|
|
" SelfHostedHuggingFaceInstructEmbeddings,\n",
|
|
|
|
")\n",
|
|
|
|
"import runhouse as rh"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "146559e8",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# For an on-demand A100 with GCP, Azure, or Lambda\n",
|
|
|
|
"gpu = rh.cluster(name=\"rh-a10x\", instance_type=\"A100:1\", use_spot=False)\n",
|
|
|
|
"\n",
|
|
|
|
"# For an on-demand A10G with AWS (no single A100s on AWS)\n",
|
|
|
|
"# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')\n",
|
|
|
|
"\n",
|
|
|
|
"# For an existing cluster\n",
|
|
|
|
"# gpu = rh.cluster(ips=['<ip of the cluster>'],\n",
|
|
|
|
"# ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'},\n",
|
|
|
|
"# name='my-cluster')"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "1230f7df",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 6,
|
|
|
|
"id": "2684e928",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"text = \"This is a test document.\""
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "1dc5e606",
|
|
|
|
"metadata": {
|
|
|
|
"scrolled": true
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"query_result = embeddings.embed_query(text)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"id": "cef9cc54",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"And similarly for SelfHostedHuggingFaceInstructEmbeddings:"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "81a17ca3",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"embeddings = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"id": "5a33d1c8",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"Now let's load an embedding model with a custom load function:"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 12,
|
|
|
|
"id": "c4af5679",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def get_pipeline():\n",
|
|
|
|
" from transformers import (\n",
|
|
|
|
" AutoModelForCausalLM,\n",
|
|
|
|
" AutoTokenizer,\n",
|
|
|
|
" pipeline,\n",
|
|
|
|
" ) # Must be inside the function in notebooks\n",
|
|
|
|
"\n",
|
|
|
|
" model_id = \"facebook/bart-base\"\n",
|
|
|
|
" tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
|
|
|
" model = AutoModelForCausalLM.from_pretrained(model_id)\n",
|
|
|
|
" return pipeline(\"feature-extraction\", model=model, tokenizer=tokenizer)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def inference_fn(pipeline, prompt):\n",
|
|
|
|
" # Return last hidden state of the model\n",
|
|
|
|
" if isinstance(prompt, list):\n",
|
|
|
|
" return [emb[0][-1] for emb in pipeline(prompt)]\n",
|
|
|
|
" return pipeline(prompt)[0][-1]"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "8654334b",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"embeddings = SelfHostedEmbeddings(\n",
|
|
|
|
" model_load_fn=get_pipeline,\n",
|
|
|
|
" hardware=gpu,\n",
|
|
|
|
" model_reqs=[\"./\", \"torch\", \"transformers\"],\n",
|
|
|
|
" inference_fn=inference_fn,\n",
|
|
|
|
")"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "fc1bfd0f",
|
2023-09-08 02:53:33 +00:00
|
|
|
"metadata": {},
|
2023-03-27 02:49:46 +00:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"query_result = embeddings.embed_query(text)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "aaad49f8",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
2023-09-08 02:53:33 +00:00
|
|
|
"version": "3.10.12"
|
2023-03-27 02:49:46 +00:00
|
|
|
},
|
|
|
|
"vscode": {
|
|
|
|
"interpreter": {
|
|
|
|
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 5
|
|
|
|
}
|