2023-04-05 14:36:49 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
2023-05-17 22:29:22 +00:00
"# TF-IDF\n",
2023-04-05 14:36:49 +00:00
"\n",
2023-05-17 22:29:22 +00:00
">[TF-IDF](https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting) means term-frequency times inverse document-frequency.\n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses [TF-IDF](https://en.wikipedia.org/wiki/Tf%E2%80%93idf) using `scikit-learn` package.\n",
2023-04-05 14:36:49 +00:00
"\n",
"For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
]
},
{
"cell_type": "code",
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-04 06:06:27 +00:00
"execution_count": 2,
2023-05-17 22:29:22 +00:00
"id": "a801b57c",
2023-04-05 14:36:49 +00:00
"metadata": {},
"outputs": [],
"source": [
2023-06-16 18:52:56 +00:00
"# !pip install scikit-learn"
2023-04-05 14:36:49 +00:00
]
},
{
"cell_type": "code",
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-04 06:06:27 +00:00
"execution_count": 3,
2023-05-17 22:29:22 +00:00
"id": "393ac030",
"metadata": {
"tags": []
},
2023-04-05 14:36:49 +00:00
"outputs": [],
"source": [
2023-05-17 22:29:22 +00:00
"from langchain.retrievers import TFIDFRetriever"
2023-04-05 14:36:49 +00:00
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-04 06:06:27 +00:00
"execution_count": 4,
2023-04-05 14:36:49 +00:00
"id": "98b1c017",
2023-05-17 22:29:22 +00:00
"metadata": {
"tags": []
},
2023-04-05 14:36:49 +00:00
"outputs": [],
"source": [
"retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
]
},
2023-05-24 17:02:09 +00:00
{
"cell_type": "markdown",
"id": "c016b266",
"metadata": {},
"source": [
"## Create a New Retriever with Documents\n",
"\n",
"You can now create a new retriever with the documents you created."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "53af4f00",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import Document\n",
2023-06-16 18:52:56 +00:00
"\n",
"retriever = TFIDFRetriever.from_documents(\n",
" [\n",
" Document(page_content=\"foo\"),\n",
" Document(page_content=\"bar\"),\n",
" Document(page_content=\"world\"),\n",
" Document(page_content=\"hello\"),\n",
" Document(page_content=\"foo bar\"),\n",
" ]\n",
")"
2023-05-24 17:02:09 +00:00
]
},
2023-04-05 14:36:49 +00:00
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
2023-05-24 17:02:09 +00:00
"execution_count": 6,
2023-04-05 14:36:49 +00:00
"id": "c0455218",
2023-05-17 22:29:22 +00:00
"metadata": {
"tags": []
},
2023-04-05 14:36:49 +00:00
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
2023-05-24 17:02:09 +00:00
"execution_count": 7,
2023-04-05 14:36:49 +00:00
"id": "7dfa5c29",
2023-05-17 22:29:22 +00:00
"metadata": {
"tags": []
},
2023-04-05 14:36:49 +00:00
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
2023-05-24 17:02:09 +00:00
"execution_count": 7,
2023-04-05 14:36:49 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-04 06:06:27 +00:00
},
{
"cell_type": "markdown",
"id": "363f3c04",
"metadata": {},
"source": [
"## Save and load\n",
"\n",
"You can easily save and load this retriever, making it handy for local development!"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "10c90d03",
"metadata": {},
"outputs": [],
"source": [
"retriever.save_local(\"testing.pkl\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fb3b153c",
"metadata": {},
"outputs": [],
"source": [
"retriever_copy = TFIDFRetriever.load_local(\"testing.pkl\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c03ff3c7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever_copy.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d7c5728",
"metadata": {},
"outputs": [],
"source": []
2023-04-05 14:36:49 +00:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-04 06:06:27 +00:00
"version": "3.10.1"
2023-04-05 14:36:49 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}