mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
71 lines
1.4 KiB
Plaintext
71 lines
1.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# MiniMax\n",
|
||
|
"\n",
|
||
|
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides LLM service for companies and individuals.\n",
|
||
|
"\n",
|
||
|
"This example goes over how to use LangChain to interact with MiniMax Inference for Chat."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os\n",
|
||
|
"\n",
|
||
|
"os.environ[\"MINIMAX_GROUP_ID\"] = \"MINIMAX_GROUP_ID\"\n",
|
||
|
"os.environ[\"MINIMAX_API_KEY\"] = \"MINIMAX_API_KEY\""
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.chat_models import MiniMaxChat\n",
|
||
|
"from langchain.schema import HumanMessage"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"chat = MiniMaxChat()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"chat(\n",
|
||
|
" [\n",
|
||
|
" HumanMessage(\n",
|
||
|
" content=\"Translate this sentence from English to French. I love programming.\"\n",
|
||
|
" )\n",
|
||
|
" ]\n",
|
||
|
")"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"language_info": {
|
||
|
"name": "python"
|
||
|
},
|
||
|
"orig_nbformat": 4
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|