langchain/docs/extras/integrations/chat/minimax.ipynb

71 lines
1.4 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# MiniMax\n",
"\n",
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides LLM service for companies and individuals.\n",
"\n",
"This example goes over how to use LangChain to interact with MiniMax Inference for Chat."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"MINIMAX_GROUP_ID\"] = \"MINIMAX_GROUP_ID\"\n",
"os.environ[\"MINIMAX_API_KEY\"] = \"MINIMAX_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import MiniMaxChat\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat = MiniMaxChat()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat(\n",
" [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" ]\n",
")"
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}