langchain/templates/openai-functions-agent/openai_functions_agent/agent.py

68 lines
2.0 KiB
Python
Raw Normal View History

from typing import List, Tuple
2023-10-27 02:44:30 +00:00
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
2023-10-27 02:44:30 +00:00
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.pydantic_v1 import BaseModel
2023-10-27 02:44:30 +00:00
from langchain.schema.messages import AIMessage, HumanMessage
from langchain.tools.render import format_tool_to_openai_function
from langchain.tools.tavily_search import TavilySearchResults
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
# Fake Tool
search = TavilySearchAPIWrapper()
tavily_tool = TavilySearchResults(api_wrapper=search)
tools = [tavily_tool]
llm = ChatOpenAI(temperature=0)
2023-10-27 02:44:30 +00:00
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are very powerful assistant, but bad at calculating lengths of words.",
),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
2023-10-27 02:44:30 +00:00
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
2023-10-27 02:44:30 +00:00
agent = (
{
"input": lambda x: x["input"],
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
"agent_scratchpad": lambda x: format_to_openai_functions(
x["intermediate_steps"]
),
}
| prompt
| llm_with_tools
| OpenAIFunctionsAgentOutputParser()
)
class AgentInput(BaseModel):
input: str
chat_history: List[Tuple[str, str]]
2023-10-27 02:44:30 +00:00
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
input_type=AgentInput
)
agent_executor = agent_executor | (lambda x: x["output"])