2023-10-31 15:34:46 +00:00
2023-10-31 07:06:02 +00:00
# neo4j-generation
2023-10-26 01:47:42 +00:00
2023-10-31 15:34:46 +00:00
This template pairs LLM-based knowledge graph extraction with Neo4j AuraDB, a fully managed cloud graph database.
You can create a free instance on [Neo4j Aura ](https://neo4j.com/cloud/platform/aura-graph-database?utm_source=langchain&utm_content=langserve ).
2023-10-26 01:47:42 +00:00
2023-10-31 15:34:46 +00:00
When you initiate a free database instance, you'll receive credentials to access the database.
2023-10-30 14:57:53 +00:00
2023-10-31 15:34:46 +00:00
This template is flexible and allows users to guide the extraction process by specifying a list of node labels and relationship types.
2023-10-30 14:57:53 +00:00
2023-10-31 07:06:02 +00:00
For more details on the functionality and capabilities of this package, please refer to [this blog post ](https://blog.langchain.dev/constructing-knowledge-graphs-from-text-using-openai-functions/ ).
2023-10-30 14:57:53 +00:00
2023-10-31 07:06:02 +00:00
## Environment Setup
2023-10-30 14:57:53 +00:00
2023-10-31 07:06:02 +00:00
You need to set the following environment variables:
2023-10-26 01:47:42 +00:00
```
OPENAI_API_KEY=< YOUR_OPENAI_API_KEY >
NEO4J_URI=< YOUR_NEO4J_URI >
NEO4J_USERNAME=< YOUR_NEO4J_USERNAME >
NEO4J_PASSWORD=< YOUR_NEO4J_PASSWORD >
```
2023-10-31 07:06:02 +00:00
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
2023-11-03 19:10:32 +00:00
pip install -U langchain-cli
2023-10-31 07:06:02 +00:00
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package neo4j-generation
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add neo4j-generation
```
And add the following code to your `server.py` file:
```python
2023-11-03 20:15:29 +00:00
from neo4j_generation.chain import chain as neo4j_generation_chain
2023-10-26 01:47:42 +00:00
2023-10-31 07:06:02 +00:00
add_routes(app, neo4j_generation_chain, path="/neo4j-generation")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here ](https://smith.langchain.com/ ).
If you don't have access, you can skip this section
2023-10-26 01:47:42 +00:00
2023-10-31 07:06:02 +00:00
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=< your-api-key >
export LANGCHAIN_PROJECT=< your-project > # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000 ](http://localhost:8000 )
We can see all templates at [http://127.0.0.1:8000/docs ](http://127.0.0.1:8000/docs )
We can access the playground at [http://127.0.0.1:8000/neo4j-generation/playground ](http://127.0.0.1:8000/neo4j-generation/playground )
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/neo4j-generation")
```