mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
137 lines
4.1 KiB
Python
137 lines
4.1 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import uuid
|
||
|
from typing import Any, Iterable, List, Optional
|
||
|
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
|
||
|
class LanceDB(VectorStore):
|
||
|
"""`LanceDB` vector store.
|
||
|
|
||
|
To use, you should have ``lancedb`` python package installed.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
db = lancedb.connect('./lancedb')
|
||
|
table = db.open_table('my_table')
|
||
|
vectorstore = LanceDB(table, embedding_function)
|
||
|
vectorstore.add_texts(['text1', 'text2'])
|
||
|
result = vectorstore.similarity_search('text1')
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
connection: Any,
|
||
|
embedding: Embeddings,
|
||
|
vector_key: Optional[str] = "vector",
|
||
|
id_key: Optional[str] = "id",
|
||
|
text_key: Optional[str] = "text",
|
||
|
):
|
||
|
"""Initialize with Lance DB connection"""
|
||
|
try:
|
||
|
import lancedb
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import lancedb python package. "
|
||
|
"Please install it with `pip install lancedb`."
|
||
|
)
|
||
|
if not isinstance(connection, lancedb.db.LanceTable):
|
||
|
raise ValueError(
|
||
|
"connection should be an instance of lancedb.db.LanceTable, ",
|
||
|
f"got {type(connection)}",
|
||
|
)
|
||
|
self._connection = connection
|
||
|
self._embedding = embedding
|
||
|
self._vector_key = vector_key
|
||
|
self._id_key = id_key
|
||
|
self._text_key = text_key
|
||
|
|
||
|
@property
|
||
|
def embeddings(self) -> Embeddings:
|
||
|
return self._embedding
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Turn texts into embedding and add it to the database
|
||
|
|
||
|
Args:
|
||
|
texts: Iterable of strings to add to the vectorstore.
|
||
|
metadatas: Optional list of metadatas associated with the texts.
|
||
|
ids: Optional list of ids to associate with the texts.
|
||
|
|
||
|
Returns:
|
||
|
List of ids of the added texts.
|
||
|
"""
|
||
|
# Embed texts and create documents
|
||
|
docs = []
|
||
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
||
|
embeddings = self._embedding.embed_documents(list(texts))
|
||
|
for idx, text in enumerate(texts):
|
||
|
embedding = embeddings[idx]
|
||
|
metadata = metadatas[idx] if metadatas else {}
|
||
|
docs.append(
|
||
|
{
|
||
|
self._vector_key: embedding,
|
||
|
self._id_key: ids[idx],
|
||
|
self._text_key: text,
|
||
|
**metadata,
|
||
|
}
|
||
|
)
|
||
|
|
||
|
self._connection.add(docs)
|
||
|
return ids
|
||
|
|
||
|
def similarity_search(
|
||
|
self, query: str, k: int = 4, **kwargs: Any
|
||
|
) -> List[Document]:
|
||
|
"""Return documents most similar to the query
|
||
|
|
||
|
Args:
|
||
|
query: String to query the vectorstore with.
|
||
|
k: Number of documents to return.
|
||
|
|
||
|
Returns:
|
||
|
List of documents most similar to the query.
|
||
|
"""
|
||
|
embedding = self._embedding.embed_query(query)
|
||
|
docs = self._connection.search(embedding).limit(k).to_df()
|
||
|
return [
|
||
|
Document(
|
||
|
page_content=row[self._text_key],
|
||
|
metadata=row[docs.columns != self._text_key],
|
||
|
)
|
||
|
for _, row in docs.iterrows()
|
||
|
]
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
connection: Any = None,
|
||
|
vector_key: Optional[str] = "vector",
|
||
|
id_key: Optional[str] = "id",
|
||
|
text_key: Optional[str] = "text",
|
||
|
**kwargs: Any,
|
||
|
) -> LanceDB:
|
||
|
instance = LanceDB(
|
||
|
connection,
|
||
|
embedding,
|
||
|
vector_key,
|
||
|
id_key,
|
||
|
text_key,
|
||
|
)
|
||
|
instance.add_texts(texts, metadatas=metadatas, **kwargs)
|
||
|
|
||
|
return instance
|