mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
103 lines
3.2 KiB
Python
103 lines
3.2 KiB
Python
|
from typing import Dict, Union
|
||
|
|
||
|
|
||
|
def sanitize(
|
||
|
input: Union[str, Dict[str, str]],
|
||
|
) -> Dict[str, Union[str, Dict[str, str]]]:
|
||
|
"""
|
||
|
Sanitize input string or dict of strings by replacing sensitive data with
|
||
|
placeholders.
|
||
|
|
||
|
It returns the sanitized input string or dict of strings and the secure
|
||
|
context as a dict following the format:
|
||
|
{
|
||
|
"sanitized_input": <sanitized input string or dict of strings>,
|
||
|
"secure_context": <secure context>
|
||
|
}
|
||
|
|
||
|
The secure context is a bytes object that is needed to de-sanitize the response
|
||
|
from the LLM.
|
||
|
|
||
|
Args:
|
||
|
input: Input string or dict of strings.
|
||
|
|
||
|
Returns:
|
||
|
Sanitized input string or dict of strings and the secure context
|
||
|
as a dict following the format:
|
||
|
{
|
||
|
"sanitized_input": <sanitized input string or dict of strings>,
|
||
|
"secure_context": <secure context>
|
||
|
}
|
||
|
|
||
|
The `secure_context` needs to be passed to the `desanitize` function.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the input is not a string or dict of strings.
|
||
|
ImportError: If the `opaqueprompts` Python package is not installed.
|
||
|
"""
|
||
|
try:
|
||
|
import opaqueprompts as op
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import the `opaqueprompts` Python package, "
|
||
|
"please install it with `pip install opaqueprompts`."
|
||
|
)
|
||
|
|
||
|
if isinstance(input, str):
|
||
|
# the input could be a string, so we sanitize the string
|
||
|
sanitize_response: op.SanitizeResponse = op.sanitize([input])
|
||
|
return {
|
||
|
"sanitized_input": sanitize_response.sanitized_texts[0],
|
||
|
"secure_context": sanitize_response.secure_context,
|
||
|
}
|
||
|
|
||
|
if isinstance(input, dict):
|
||
|
# the input could be a dict[string, string], so we sanitize the values
|
||
|
values = list()
|
||
|
|
||
|
# get the values from the dict
|
||
|
for key in input:
|
||
|
values.append(input[key])
|
||
|
|
||
|
# sanitize the values
|
||
|
sanitize_values_response: op.SanitizeResponse = op.sanitize(values)
|
||
|
|
||
|
# reconstruct the dict with the sanitized values
|
||
|
sanitized_input_values = sanitize_values_response.sanitized_texts
|
||
|
idx = 0
|
||
|
sanitized_input = dict()
|
||
|
for key in input:
|
||
|
sanitized_input[key] = sanitized_input_values[idx]
|
||
|
idx += 1
|
||
|
|
||
|
return {
|
||
|
"sanitized_input": sanitized_input,
|
||
|
"secure_context": sanitize_values_response.secure_context,
|
||
|
}
|
||
|
|
||
|
raise ValueError(f"Unexpected input type {type(input)}")
|
||
|
|
||
|
|
||
|
def desanitize(sanitized_text: str, secure_context: bytes) -> str:
|
||
|
"""
|
||
|
Restore the original sensitive data from the sanitized text.
|
||
|
|
||
|
Args:
|
||
|
sanitized_text: Sanitized text.
|
||
|
secure_context: Secure context returned by the `sanitize` function.
|
||
|
|
||
|
Returns:
|
||
|
De-sanitized text.
|
||
|
"""
|
||
|
try:
|
||
|
import opaqueprompts as op
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import the `opaqueprompts` Python package, "
|
||
|
"please install it with `pip install opaqueprompts`."
|
||
|
)
|
||
|
desanitize_response: op.DesanitizeResponse = op.desanitize(
|
||
|
sanitized_text, secure_context
|
||
|
)
|
||
|
return desanitize_response.desanitized_text
|