langchain/libs/community/langchain_community/utilities/opaqueprompts.py

103 lines
3.2 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
from typing import Dict, Union
def sanitize(
input: Union[str, Dict[str, str]],
) -> Dict[str, Union[str, Dict[str, str]]]:
"""
Sanitize input string or dict of strings by replacing sensitive data with
placeholders.
It returns the sanitized input string or dict of strings and the secure
context as a dict following the format:
{
"sanitized_input": <sanitized input string or dict of strings>,
"secure_context": <secure context>
}
The secure context is a bytes object that is needed to de-sanitize the response
from the LLM.
Args:
input: Input string or dict of strings.
Returns:
Sanitized input string or dict of strings and the secure context
as a dict following the format:
{
"sanitized_input": <sanitized input string or dict of strings>,
"secure_context": <secure context>
}
The `secure_context` needs to be passed to the `desanitize` function.
Raises:
ValueError: If the input is not a string or dict of strings.
ImportError: If the `opaqueprompts` Python package is not installed.
"""
try:
import opaqueprompts as op
except ImportError:
raise ImportError(
"Could not import the `opaqueprompts` Python package, "
"please install it with `pip install opaqueprompts`."
)
if isinstance(input, str):
# the input could be a string, so we sanitize the string
sanitize_response: op.SanitizeResponse = op.sanitize([input])
return {
"sanitized_input": sanitize_response.sanitized_texts[0],
"secure_context": sanitize_response.secure_context,
}
if isinstance(input, dict):
# the input could be a dict[string, string], so we sanitize the values
values = list()
# get the values from the dict
for key in input:
values.append(input[key])
# sanitize the values
sanitize_values_response: op.SanitizeResponse = op.sanitize(values)
# reconstruct the dict with the sanitized values
sanitized_input_values = sanitize_values_response.sanitized_texts
idx = 0
sanitized_input = dict()
for key in input:
sanitized_input[key] = sanitized_input_values[idx]
idx += 1
return {
"sanitized_input": sanitized_input,
"secure_context": sanitize_values_response.secure_context,
}
raise ValueError(f"Unexpected input type {type(input)}")
def desanitize(sanitized_text: str, secure_context: bytes) -> str:
"""
Restore the original sensitive data from the sanitized text.
Args:
sanitized_text: Sanitized text.
secure_context: Secure context returned by the `sanitize` function.
Returns:
De-sanitized text.
"""
try:
import opaqueprompts as op
except ImportError:
raise ImportError(
"Could not import the `opaqueprompts` Python package, "
"please install it with `pip install opaqueprompts`."
)
desanitize_response: op.DesanitizeResponse = op.desanitize(
sanitized_text, secure_context
)
return desanitize_response.desanitized_text