langchain/libs/community/langchain_community/utilities/google_scholar.py

130 lines
5.0 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
"""Util that calls Google Scholar Search."""
from typing import Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
class GoogleScholarAPIWrapper(BaseModel):
"""Wrapper for Google Scholar API
You can create serpapi key by signing up at: https://serpapi.com/users/sign_up.
The wrapper uses the serpapi python package:
https://serpapi.com/integrations/python#search-google-scholar
To use, you should have the environment variable ``SERP_API_KEY``
set with your API key, or pass `serp_api_key` as a named parameter
to the constructor.
Attributes:
top_k_results: number of results to return from google-scholar query search.
By default it returns top 10 results.
hl: attribute defines the language to use for the Google Scholar search.
It's a two-letter language code.
(e.g., en for English, es for Spanish, or fr for French). Head to the
Google languages page for a full list of supported Google languages:
https://serpapi.com/google-languages
lr: attribute defines one or multiple languages to limit the search to.
It uses lang_{two-letter language code} to specify languages
and | as a delimiter. (e.g., lang_fr|lang_de will only search French
and German pages). Head to the Google lr languages for a full
list of supported languages: https://serpapi.com/google-lr-languages
Example:
.. code-block:: python
from langchain_community.utilities import GoogleScholarAPIWrapper
google_scholar = GoogleScholarAPIWrapper()
google_scholar.run('langchain')
"""
top_k_results: int = 10
hl: str = "en"
lr: str = "lang_en"
serp_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
serp_api_key = get_from_dict_or_env(values, "serp_api_key", "SERP_API_KEY")
values["SERP_API_KEY"] = serp_api_key
try:
from serpapi import GoogleScholarSearch
except ImportError:
raise ImportError(
"google-search-results is not installed. "
"Please install it with `pip install google-search-results"
">=2.4.2`"
)
GoogleScholarSearch.SERP_API_KEY = serp_api_key
values["google_scholar_engine"] = GoogleScholarSearch
return values
def run(self, query: str) -> str:
"""Run query through GoogleSearchScholar and parse result"""
total_results = []
page = 0
while page < max((self.top_k_results - 20), 1):
# We are getting 20 results from every page
# which is the max in order to reduce the number of API CALLS.
# 0 is the first page of results, 20 is the 2nd page of results,
# 40 is the 3rd page of results, etc.
results = (
self.google_scholar_engine( # type: ignore
{
"q": query,
"start": page,
"hl": self.hl,
"num": min(
self.top_k_results, 20
), # if top_k_result is less than 20.
"lr": self.lr,
}
)
.get_dict()
.get("organic_results", [])
)
total_results.extend(results)
if not results: # No need to search for more pages if current page
# has returned no results
break
page += 20
if (
self.top_k_results % 20 != 0 and page > 20 and total_results
): # From the last page we would only need top_k_results%20 results
# if k is not divisible by 20.
results = (
self.google_scholar_engine( # type: ignore
{
"q": query,
"start": page,
"num": self.top_k_results % 20,
"hl": self.hl,
"lr": self.lr,
}
)
.get_dict()
.get("organic_results", [])
)
total_results.extend(results)
if not total_results:
return "No good Google Scholar Result was found"
docs = [
f"Title: {result.get('title','')}\n"
f"Authors: {','.join([author.get('name') for author in result.get('publication_info',{}).get('authors',[])])}\n" # noqa: E501
f"Summary: {result.get('publication_info',{}).get('summary','')}\n"
f"Total-Citations: {result.get('inline_links',{}).get('cited_by',{}).get('total','')}" # noqa: E501
for result in total_results
]
return "\n\n".join(docs)