mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
|
"""KNN Retriever.
|
||
|
Largely based on
|
||
|
https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import concurrent.futures
|
||
|
from typing import Any, List, Optional
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
|
||
|
def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray:
|
||
|
"""
|
||
|
Create an index of embeddings for a list of contexts.
|
||
|
|
||
|
Args:
|
||
|
contexts: List of contexts to embed.
|
||
|
embeddings: Embeddings model to use.
|
||
|
|
||
|
Returns:
|
||
|
Index of embeddings.
|
||
|
"""
|
||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||
|
return np.array(list(executor.map(embeddings.embed_query, contexts)))
|
||
|
|
||
|
|
||
|
class KNNRetriever(BaseRetriever):
|
||
|
"""`KNN` retriever."""
|
||
|
|
||
|
embeddings: Embeddings
|
||
|
"""Embeddings model to use."""
|
||
|
index: Any
|
||
|
"""Index of embeddings."""
|
||
|
texts: List[str]
|
||
|
"""List of texts to index."""
|
||
|
k: int = 4
|
||
|
"""Number of results to return."""
|
||
|
relevancy_threshold: Optional[float] = None
|
||
|
"""Threshold for relevancy."""
|
||
|
|
||
|
class Config:
|
||
|
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
arbitrary_types_allowed = True
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls, texts: List[str], embeddings: Embeddings, **kwargs: Any
|
||
|
) -> KNNRetriever:
|
||
|
index = create_index(texts, embeddings)
|
||
|
return cls(embeddings=embeddings, index=index, texts=texts, **kwargs)
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||
|
) -> List[Document]:
|
||
|
query_embeds = np.array(self.embeddings.embed_query(query))
|
||
|
# calc L2 norm
|
||
|
index_embeds = self.index / np.sqrt((self.index**2).sum(1, keepdims=True))
|
||
|
query_embeds = query_embeds / np.sqrt((query_embeds**2).sum())
|
||
|
|
||
|
similarities = index_embeds.dot(query_embeds)
|
||
|
sorted_ix = np.argsort(-similarities)
|
||
|
|
||
|
denominator = np.max(similarities) - np.min(similarities) + 1e-6
|
||
|
normalized_similarities = (similarities - np.min(similarities)) / denominator
|
||
|
|
||
|
top_k_results = [
|
||
|
Document(page_content=self.texts[row])
|
||
|
for row in sorted_ix[0 : self.k]
|
||
|
if (
|
||
|
self.relevancy_threshold is None
|
||
|
or normalized_similarities[row] >= self.relevancy_threshold
|
||
|
)
|
||
|
]
|
||
|
return top_k_results
|