langchain/libs/community/langchain_community/embeddings/xinference.py

125 lines
3.2 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
"""Wrapper around Xinference embedding models."""
from typing import Any, List, Optional
from langchain_core.embeddings import Embeddings
class XinferenceEmbeddings(Embeddings):
"""Xinference embedding models.
To use, you should have the xinference library installed:
.. code-block:: bash
pip install xinference
Check out: https://github.com/xorbitsai/inference
To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers.
Example:
To start a local instance of Xinference, run
.. code-block:: bash
$ xinference
You can also deploy Xinference in a distributed cluster. Here are the steps:
Starting the supervisor:
.. code-block:: bash
$ xinference-supervisor
Starting the worker:
.. code-block:: bash
$ xinference-worker
Then, launch a model using command line interface (CLI).
Example:
.. code-block:: bash
$ xinference launch -n orca -s 3 -q q4_0
It will return a model UID. Then you can use Xinference Embedding with LangChain.
Example:
.. code-block:: python
from langchain_community.embeddings import XinferenceEmbeddings
xinference = XinferenceEmbeddings(
server_url="http://0.0.0.0:9997",
model_uid = {model_uid} # replace model_uid with the model UID return from launching the model
)
""" # noqa: E501
client: Any
server_url: Optional[str]
"""URL of the xinference server"""
model_uid: Optional[str]
"""UID of the launched model"""
def __init__(
self, server_url: Optional[str] = None, model_uid: Optional[str] = None
):
try:
from xinference.client import RESTfulClient
except ImportError as e:
raise ImportError(
"Could not import RESTfulClient from xinference. Please install it"
" with `pip install xinference`."
) from e
super().__init__()
if server_url is None:
raise ValueError("Please provide server URL")
if model_uid is None:
raise ValueError("Please provide the model UID")
self.server_url = server_url
self.model_uid = model_uid
self.client = RESTfulClient(server_url)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using Xinference.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
model = self.client.get_model(self.model_uid)
embeddings = [
model.create_embedding(text)["data"][0]["embedding"] for text in texts
]
return [list(map(float, e)) for e in embeddings]
def embed_query(self, text: str) -> List[float]:
"""Embed a query of documents using Xinference.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
model = self.client.get_model(self.model_uid)
embedding_res = model.create_embedding(text)
embedding = embedding_res["data"][0]["embedding"]
return list(map(float, embedding))