mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
74 lines
2.2 KiB
Python
74 lines
2.2 KiB
Python
|
from typing import Any, Dict, List
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
|
||
|
class NLPCloudEmbeddings(BaseModel, Embeddings):
|
||
|
"""NLP Cloud embedding models.
|
||
|
|
||
|
To use, you should have the nlpcloud python package installed
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import NLPCloudEmbeddings
|
||
|
|
||
|
embeddings = NLPCloudEmbeddings()
|
||
|
"""
|
||
|
|
||
|
model_name: str # Define model_name as a class attribute
|
||
|
gpu: bool # Define gpu as a class attribute
|
||
|
client: Any #: :meta private:
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str = "paraphrase-multilingual-mpnet-base-v2",
|
||
|
gpu: bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(model_name=model_name, gpu=gpu, **kwargs)
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
nlpcloud_api_key = get_from_dict_or_env(
|
||
|
values, "nlpcloud_api_key", "NLPCLOUD_API_KEY"
|
||
|
)
|
||
|
try:
|
||
|
import nlpcloud
|
||
|
|
||
|
values["client"] = nlpcloud.Client(
|
||
|
values["model_name"], nlpcloud_api_key, gpu=values["gpu"], lang="en"
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import nlpcloud python package. "
|
||
|
"Please install it with `pip install nlpcloud`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Embed a list of documents using NLP Cloud.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
|
||
|
return self.client.embeddings(texts)["embeddings"]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Embed a query using NLP Cloud.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
return self.client.embeddings([text])["embeddings"][0]
|