mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
from typing import Any, Callable, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
from tenacity import (
|
||
|
before_sleep_log,
|
||
|
retry,
|
||
|
retry_if_exception_type,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
)
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _create_retry_decorator() -> Callable[[Any], Any]:
|
||
|
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
|
||
|
import google.api_core.exceptions
|
||
|
|
||
|
multiplier = 2
|
||
|
min_seconds = 1
|
||
|
max_seconds = 60
|
||
|
max_retries = 10
|
||
|
|
||
|
return retry(
|
||
|
reraise=True,
|
||
|
stop=stop_after_attempt(max_retries),
|
||
|
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
|
||
|
retry=(
|
||
|
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
|
||
|
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
|
||
|
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
|
||
|
),
|
||
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||
|
)
|
||
|
|
||
|
|
||
|
def embed_with_retry(
|
||
|
embeddings: GooglePalmEmbeddings, *args: Any, **kwargs: Any
|
||
|
) -> Any:
|
||
|
"""Use tenacity to retry the completion call."""
|
||
|
retry_decorator = _create_retry_decorator()
|
||
|
|
||
|
@retry_decorator
|
||
|
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
|
||
|
return embeddings.client.generate_embeddings(*args, **kwargs)
|
||
|
|
||
|
return _embed_with_retry(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class GooglePalmEmbeddings(BaseModel, Embeddings):
|
||
|
"""Google's PaLM Embeddings APIs."""
|
||
|
|
||
|
client: Any
|
||
|
google_api_key: Optional[str]
|
||
|
model_name: str = "models/embedding-gecko-001"
|
||
|
"""Model name to use."""
|
||
|
show_progress_bar: bool = False
|
||
|
"""Whether to show a tqdm progress bar. Must have `tqdm` installed."""
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate api key, python package exists."""
|
||
|
google_api_key = get_from_dict_or_env(
|
||
|
values, "google_api_key", "GOOGLE_API_KEY"
|
||
|
)
|
||
|
try:
|
||
|
import google.generativeai as genai
|
||
|
|
||
|
genai.configure(api_key=google_api_key)
|
||
|
except ImportError:
|
||
|
raise ImportError("Could not import google.generativeai python package.")
|
||
|
|
||
|
values["client"] = genai
|
||
|
|
||
|
return values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
if self.show_progress_bar:
|
||
|
try:
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
iter_ = tqdm(texts, desc="GooglePalmEmbeddings")
|
||
|
except ImportError:
|
||
|
logger.warning(
|
||
|
"Unable to show progress bar because tqdm could not be imported. "
|
||
|
"Please install with `pip install tqdm`."
|
||
|
)
|
||
|
iter_ = texts
|
||
|
else:
|
||
|
iter_ = texts
|
||
|
return [self.embed_query(text) for text in iter_]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Embed query text."""
|
||
|
embedding = embed_with_retry(self, self.model_name, text)
|
||
|
return embedding["embedding"]
|