mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
129 lines
4.3 KiB
Python
129 lines
4.3 KiB
Python
|
from typing import Any, Dict, List, Mapping, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32"
|
||
|
|
||
|
|
||
|
class DeepInfraEmbeddings(BaseModel, Embeddings):
|
||
|
"""Deep Infra's embedding inference service.
|
||
|
|
||
|
To use, you should have the
|
||
|
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
|
||
|
it as a named parameter to the constructor.
|
||
|
There are multiple embeddings models available,
|
||
|
see https://deepinfra.com/models?type=embeddings.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import DeepInfraEmbeddings
|
||
|
deepinfra_emb = DeepInfraEmbeddings(
|
||
|
model_id="sentence-transformers/clip-ViT-B-32",
|
||
|
deepinfra_api_token="my-api-key"
|
||
|
)
|
||
|
r1 = deepinfra_emb.embed_documents(
|
||
|
[
|
||
|
"Alpha is the first letter of Greek alphabet",
|
||
|
"Beta is the second letter of Greek alphabet",
|
||
|
]
|
||
|
)
|
||
|
r2 = deepinfra_emb.embed_query(
|
||
|
"What is the second letter of Greek alphabet"
|
||
|
)
|
||
|
|
||
|
"""
|
||
|
|
||
|
model_id: str = DEFAULT_MODEL_ID
|
||
|
"""Embeddings model to use."""
|
||
|
normalize: bool = False
|
||
|
"""whether to normalize the computed embeddings"""
|
||
|
embed_instruction: str = "passage: "
|
||
|
"""Instruction used to embed documents."""
|
||
|
query_instruction: str = "query: "
|
||
|
"""Instruction used to embed the query."""
|
||
|
model_kwargs: Optional[dict] = None
|
||
|
"""Other model keyword args"""
|
||
|
|
||
|
deepinfra_api_token: Optional[str] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
deepinfra_api_token = get_from_dict_or_env(
|
||
|
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
|
||
|
)
|
||
|
values["deepinfra_api_token"] = deepinfra_api_token
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {"model_id": self.model_id}
|
||
|
|
||
|
def _embed(self, input: List[str]) -> List[List[float]]:
|
||
|
_model_kwargs = self.model_kwargs or {}
|
||
|
# HTTP headers for authorization
|
||
|
headers = {
|
||
|
"Authorization": f"bearer {self.deepinfra_api_token}",
|
||
|
"Content-Type": "application/json",
|
||
|
}
|
||
|
# send request
|
||
|
try:
|
||
|
res = requests.post(
|
||
|
f"https://api.deepinfra.com/v1/inference/{self.model_id}",
|
||
|
headers=headers,
|
||
|
json={"inputs": input, "normalize": self.normalize, **_model_kwargs},
|
||
|
)
|
||
|
except requests.exceptions.RequestException as e:
|
||
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||
|
|
||
|
if res.status_code != 200:
|
||
|
raise ValueError(
|
||
|
"Error raised by inference API HTTP code: %s, %s"
|
||
|
% (res.status_code, res.text)
|
||
|
)
|
||
|
try:
|
||
|
t = res.json()
|
||
|
embeddings = t["embeddings"]
|
||
|
except requests.exceptions.JSONDecodeError as e:
|
||
|
raise ValueError(
|
||
|
f"Error raised by inference API: {e}.\nResponse: {res.text}"
|
||
|
)
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Embed documents using a Deep Infra deployed embedding model.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]
|
||
|
embeddings = self._embed(instruction_pairs)
|
||
|
return embeddings
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Embed a query using a Deep Infra deployed embedding model.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
instruction_pair = f"{self.query_instruction}{text}"
|
||
|
embedding = self._embed([instruction_pair])[0]
|
||
|
return embedding
|