2023-12-11 21:53:30 +00:00
|
|
|
"""OpenAI chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from typing import (
|
|
|
|
TYPE_CHECKING,
|
|
|
|
Any,
|
|
|
|
AsyncIterator,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Iterator,
|
|
|
|
List,
|
|
|
|
Mapping,
|
|
|
|
Optional,
|
|
|
|
Sequence,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
Union,
|
|
|
|
)
|
|
|
|
|
2024-01-05 23:03:28 +00:00
|
|
|
from langchain_core._api.deprecation import deprecated
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models import LanguageModelInput
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
agenerate_from_stream,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models.llms import create_base_retry_decorator
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessageChunk,
|
|
|
|
FunctionMessageChunk,
|
|
|
|
HumanMessageChunk,
|
|
|
|
SystemMessageChunk,
|
|
|
|
ToolMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
|
|
|
from langchain_core.runnables import Runnable
|
|
|
|
from langchain_core.utils import (
|
|
|
|
get_from_dict_or_env,
|
|
|
|
get_pydantic_field_names,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_community.adapters.openai import (
|
|
|
|
convert_dict_to_message,
|
|
|
|
convert_message_to_dict,
|
|
|
|
)
|
|
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
import tiktoken
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _import_tiktoken() -> Any:
|
|
|
|
try:
|
|
|
|
import tiktoken
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not import tiktoken python package. "
|
|
|
|
"This is needed in order to calculate get_token_ids. "
|
|
|
|
"Please install it with `pip install tiktoken`."
|
|
|
|
)
|
|
|
|
return tiktoken
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(
|
|
|
|
llm: ChatOpenAI,
|
|
|
|
run_manager: Optional[
|
|
|
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
|
|
|
] = None,
|
|
|
|
) -> Callable[[Any], Any]:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
errors = [
|
|
|
|
openai.error.Timeout,
|
|
|
|
openai.error.APIError,
|
|
|
|
openai.error.APIConnectionError,
|
|
|
|
openai.error.RateLimitError,
|
|
|
|
openai.error.ServiceUnavailableError,
|
|
|
|
]
|
|
|
|
return create_base_retry_decorator(
|
|
|
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
|
|
llm: ChatOpenAI,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Any:
|
|
|
|
"""Use tenacity to retry the async completion call."""
|
|
|
|
if is_openai_v1():
|
|
|
|
return await llm.async_client.create(**kwargs)
|
|
|
|
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
|
|
|
return await llm.client.acreate(**kwargs)
|
|
|
|
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
|
|
) -> BaseMessageChunk:
|
|
|
|
role = _dict.get("role")
|
|
|
|
content = _dict.get("content") or ""
|
|
|
|
additional_kwargs: Dict = {}
|
|
|
|
if _dict.get("function_call"):
|
|
|
|
function_call = dict(_dict["function_call"])
|
|
|
|
if "name" in function_call and function_call["name"] is None:
|
|
|
|
function_call["name"] = ""
|
|
|
|
additional_kwargs["function_call"] = function_call
|
|
|
|
if _dict.get("tool_calls"):
|
|
|
|
additional_kwargs["tool_calls"] = _dict["tool_calls"]
|
|
|
|
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
|
|
return HumanMessageChunk(content=content)
|
|
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
|
|
return SystemMessageChunk(content=content)
|
|
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
|
|
elif role == "tool" or default_class == ToolMessageChunk:
|
|
|
|
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
|
|
|
elif role or default_class == ChatMessageChunk:
|
|
|
|
return ChatMessageChunk(content=content, role=role)
|
|
|
|
else:
|
|
|
|
return default_class(content=content)
|
|
|
|
|
|
|
|
|
2024-01-09 19:36:58 +00:00
|
|
|
@deprecated(
|
2024-01-10 04:36:16 +00:00
|
|
|
since="0.0.10", removal="0.2.0", alternative_import="langchain_openai.ChatOpenAI"
|
2024-01-09 19:36:58 +00:00
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
class ChatOpenAI(BaseChatModel):
|
|
|
|
"""`OpenAI` Chat large language models API.
|
|
|
|
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
|
|
environment variable ``OPENAI_API_KEY`` set with your API key.
|
|
|
|
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
|
|
in, even if not explicitly saved on this class.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
|
|
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"openai_api_key": "OPENAI_API_KEY"}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
|
|
"""Get the namespace of the langchain object."""
|
|
|
|
return ["langchain", "chat_models", "openai"]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
|
|
|
|
if self.openai_organization:
|
|
|
|
attributes["openai_organization"] = self.openai_organization
|
|
|
|
|
|
|
|
if self.openai_api_base:
|
|
|
|
attributes["openai_api_base"] = self.openai_api_base
|
|
|
|
|
|
|
|
if self.openai_proxy:
|
|
|
|
attributes["openai_proxy"] = self.openai_proxy
|
|
|
|
|
|
|
|
return attributes
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def is_lc_serializable(cls) -> bool:
|
|
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
|
|
return True
|
|
|
|
|
|
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
|
|
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
|
|
|
|
"""Model name to use."""
|
|
|
|
temperature: float = 0.7
|
|
|
|
"""What sampling temperature to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
|
|
# When updating this to use a SecretStr
|
|
|
|
# Check for classes that derive from this class (as some of them
|
|
|
|
# may assume openai_api_key is a str)
|
|
|
|
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
|
|
|
|
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
|
|
|
|
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
|
|
|
|
"""Base URL path for API requests, leave blank if not using a proxy or service
|
|
|
|
emulator."""
|
|
|
|
openai_organization: Optional[str] = Field(default=None, alias="organization")
|
|
|
|
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
|
|
|
|
# to support explicit proxy for OpenAI
|
|
|
|
openai_proxy: Optional[str] = None
|
|
|
|
request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
|
|
|
|
default=None, alias="timeout"
|
|
|
|
)
|
|
|
|
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
|
|
|
|
None."""
|
|
|
|
max_retries: int = 2
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
n: int = 1
|
|
|
|
"""Number of chat completions to generate for each prompt."""
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
tiktoken_model_name: Optional[str] = None
|
|
|
|
"""The model name to pass to tiktoken when using this class.
|
|
|
|
Tiktoken is used to count the number of tokens in documents to constrain
|
|
|
|
them to be under a certain limit. By default, when set to None, this will
|
|
|
|
be the same as the embedding model name. However, there are some cases
|
|
|
|
where you may want to use this Embedding class with a model name not
|
|
|
|
supported by tiktoken. This can include when using Azure embeddings or
|
|
|
|
when using one of the many model providers that expose an OpenAI-like
|
|
|
|
API but with different models. In those cases, in order to avoid erroring
|
|
|
|
when tiktoken is called, you can specify a model name to use here."""
|
|
|
|
default_headers: Union[Mapping[str, str], None] = None
|
|
|
|
default_query: Union[Mapping[str, object], None] = None
|
|
|
|
# Configure a custom httpx client. See the
|
|
|
|
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
|
|
|
|
http_client: Union[Any, None] = None
|
|
|
|
"""Optional httpx.Client."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
logger.warning(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
if values["n"] < 1:
|
|
|
|
raise ValueError("n must be at least 1.")
|
|
|
|
if values["n"] > 1 and values["streaming"]:
|
|
|
|
raise ValueError("n must be 1 when streaming.")
|
|
|
|
|
|
|
|
values["openai_api_key"] = get_from_dict_or_env(
|
|
|
|
values, "openai_api_key", "OPENAI_API_KEY"
|
|
|
|
)
|
|
|
|
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
|
|
|
values["openai_organization"] = (
|
|
|
|
values["openai_organization"]
|
|
|
|
or os.getenv("OPENAI_ORG_ID")
|
|
|
|
or os.getenv("OPENAI_ORGANIZATION")
|
|
|
|
)
|
|
|
|
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
|
|
|
"OPENAI_API_BASE"
|
|
|
|
)
|
|
|
|
values["openai_proxy"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"openai_proxy",
|
|
|
|
"OPENAI_PROXY",
|
|
|
|
default="",
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
|
|
|
|
if is_openai_v1():
|
|
|
|
client_params = {
|
|
|
|
"api_key": values["openai_api_key"],
|
|
|
|
"organization": values["openai_organization"],
|
|
|
|
"base_url": values["openai_api_base"],
|
|
|
|
"timeout": values["request_timeout"],
|
|
|
|
"max_retries": values["max_retries"],
|
|
|
|
"default_headers": values["default_headers"],
|
|
|
|
"default_query": values["default_query"],
|
|
|
|
"http_client": values["http_client"],
|
|
|
|
}
|
|
|
|
|
|
|
|
if not values.get("client"):
|
|
|
|
values["client"] = openai.OpenAI(**client_params).chat.completions
|
|
|
|
if not values.get("async_client"):
|
|
|
|
values["async_client"] = openai.AsyncOpenAI(
|
|
|
|
**client_params
|
|
|
|
).chat.completions
|
|
|
|
elif not values.get("client"):
|
|
|
|
values["client"] = openai.ChatCompletion
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
|
|
params = {
|
|
|
|
"model": self.model_name,
|
|
|
|
"stream": self.streaming,
|
|
|
|
"n": self.n,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
if self.max_tokens is not None:
|
|
|
|
params["max_tokens"] = self.max_tokens
|
|
|
|
if self.request_timeout is not None and not is_openai_v1():
|
|
|
|
params["request_timeout"] = self.request_timeout
|
|
|
|
return params
|
|
|
|
|
|
|
|
def completion_with_retry(
|
|
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
|
|
) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
if is_openai_v1():
|
|
|
|
return self.client.create(**kwargs)
|
|
|
|
|
|
|
|
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
return self.client.create(**kwargs)
|
|
|
|
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
|
|
overall_token_usage: dict = {}
|
|
|
|
system_fingerprint = None
|
|
|
|
for output in llm_outputs:
|
|
|
|
if output is None:
|
|
|
|
# Happens in streaming
|
|
|
|
continue
|
|
|
|
token_usage = output["token_usage"]
|
Fix token_usage None issue in ChatOpenAI with local Chatglm2-6B (#14493)
When using local Chatglm2-6B by changing OPENAI_BASE_URL to localhost,
the token_usage in ChatOpenAI becomes None. This leads to an
AttributeError when trying to access token_usage.items().
This commit adds a check to ensure token_usage is not None before
accessing its items. This change prevents the AttributeError and allows
ChatOpenAI to work seamlessly with a local Chatglm2-6B model, aligning
with the way it operates with the OpenAI API.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-13 01:30:37 +00:00
|
|
|
if token_usage is not None:
|
|
|
|
for k, v in token_usage.items():
|
|
|
|
if k in overall_token_usage:
|
|
|
|
overall_token_usage[k] += v
|
|
|
|
else:
|
|
|
|
overall_token_usage[k] = v
|
2023-12-11 21:53:30 +00:00
|
|
|
if system_fingerprint is None:
|
|
|
|
system_fingerprint = output.get("system_fingerprint")
|
|
|
|
combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
|
|
|
|
if system_fingerprint:
|
|
|
|
combined["system_fingerprint"] = system_fingerprint
|
|
|
|
return combined
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
for chunk in self.completion_with_retry(
|
|
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
):
|
|
|
|
if not isinstance(chunk, dict):
|
|
|
|
chunk = chunk.dict()
|
|
|
|
if len(chunk["choices"]) == 0:
|
|
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["delta"], default_chunk_class
|
|
|
|
)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
|
|
|
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
stream: Optional[bool] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
should_stream = stream if stream is not None else self.streaming
|
|
|
|
if should_stream:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {
|
|
|
|
**params,
|
|
|
|
**({"stream": stream} if stream is not None else {}),
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
response = self.completion_with_retry(
|
|
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
def _create_message_dicts(
|
|
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
|
|
params = self._client_params
|
|
|
|
if stop is not None:
|
|
|
|
if "stop" in params:
|
|
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
|
|
params["stop"] = stop
|
|
|
|
message_dicts = [convert_message_to_dict(m) for m in messages]
|
|
|
|
return message_dicts, params
|
|
|
|
|
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
|
|
|
generations = []
|
|
|
|
if not isinstance(response, dict):
|
|
|
|
response = response.dict()
|
|
|
|
for res in response["choices"]:
|
|
|
|
message = convert_dict_to_message(res["message"])
|
2023-12-18 01:59:27 +00:00
|
|
|
generation_info = dict(finish_reason=res.get("finish_reason"))
|
|
|
|
if "logprobs" in res:
|
|
|
|
generation_info["logprobs"] = res["logprobs"]
|
2023-12-11 21:53:30 +00:00
|
|
|
gen = ChatGeneration(
|
|
|
|
message=message,
|
2023-12-18 01:59:27 +00:00
|
|
|
generation_info=generation_info,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
generations.append(gen)
|
|
|
|
token_usage = response.get("usage", {})
|
|
|
|
llm_output = {
|
|
|
|
"token_usage": token_usage,
|
|
|
|
"model_name": self.model_name,
|
|
|
|
"system_fingerprint": response.get("system_fingerprint", ""),
|
|
|
|
}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
async for chunk in await acompletion_with_retry(
|
|
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
):
|
|
|
|
if not isinstance(chunk, dict):
|
|
|
|
chunk = chunk.dict()
|
|
|
|
if len(chunk["choices"]) == 0:
|
|
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["delta"], default_chunk_class
|
|
|
|
)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
|
|
|
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk)
|
|
|
|
|
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
stream: Optional[bool] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
should_stream = stream if stream is not None else self.streaming
|
|
|
|
if should_stream:
|
|
|
|
stream_iter = self._astream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {
|
|
|
|
**params,
|
|
|
|
**({"stream": stream} if stream is not None else {}),
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
response = await acompletion_with_retry(
|
|
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the parameters used for the openai client."""
|
|
|
|
openai_creds: Dict[str, Any] = {
|
|
|
|
"model": self.model_name,
|
|
|
|
}
|
|
|
|
if not is_openai_v1():
|
|
|
|
openai_creds.update(
|
|
|
|
{
|
|
|
|
"api_key": self.openai_api_key,
|
|
|
|
"api_base": self.openai_api_base,
|
|
|
|
"organization": self.openai_organization,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
if self.openai_proxy:
|
|
|
|
import openai
|
|
|
|
|
2024-02-05 21:42:59 +00:00
|
|
|
openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy}
|
2023-12-11 21:53:30 +00:00
|
|
|
return {**self._default_params, **openai_creds}
|
|
|
|
|
|
|
|
def _get_invocation_params(
|
|
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
"""Get the parameters used to invoke the model."""
|
|
|
|
return {
|
|
|
|
"model": self.model_name,
|
|
|
|
**super()._get_invocation_params(stop=stop),
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of chat model."""
|
|
|
|
return "openai-chat"
|
|
|
|
|
|
|
|
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
|
|
|
|
tiktoken_ = _import_tiktoken()
|
|
|
|
if self.tiktoken_model_name is not None:
|
|
|
|
model = self.tiktoken_model_name
|
|
|
|
else:
|
|
|
|
model = self.model_name
|
|
|
|
if model == "gpt-3.5-turbo":
|
|
|
|
# gpt-3.5-turbo may change over time.
|
|
|
|
# Returning num tokens assuming gpt-3.5-turbo-0301.
|
|
|
|
model = "gpt-3.5-turbo-0301"
|
|
|
|
elif model == "gpt-4":
|
|
|
|
# gpt-4 may change over time.
|
|
|
|
# Returning num tokens assuming gpt-4-0314.
|
|
|
|
model = "gpt-4-0314"
|
|
|
|
# Returns the number of tokens used by a list of messages.
|
|
|
|
try:
|
|
|
|
encoding = tiktoken_.encoding_for_model(model)
|
|
|
|
except KeyError:
|
|
|
|
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
|
|
|
model = "cl100k_base"
|
|
|
|
encoding = tiktoken_.get_encoding(model)
|
|
|
|
return model, encoding
|
|
|
|
|
|
|
|
def get_token_ids(self, text: str) -> List[int]:
|
|
|
|
"""Get the tokens present in the text with tiktoken package."""
|
|
|
|
# tiktoken NOT supported for Python 3.7 or below
|
|
|
|
if sys.version_info[1] <= 7:
|
|
|
|
return super().get_token_ids(text)
|
|
|
|
_, encoding_model = self._get_encoding_model()
|
|
|
|
return encoding_model.encode(text)
|
|
|
|
|
|
|
|
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
|
|
|
|
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
|
|
|
|
|
|
|
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
|
|
|
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
|
|
|
if sys.version_info[1] <= 7:
|
|
|
|
return super().get_num_tokens_from_messages(messages)
|
|
|
|
model, encoding = self._get_encoding_model()
|
|
|
|
if model.startswith("gpt-3.5-turbo-0301"):
|
|
|
|
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
|
|
|
tokens_per_message = 4
|
|
|
|
# if there's a name, the role is omitted
|
|
|
|
tokens_per_name = -1
|
|
|
|
elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"):
|
|
|
|
tokens_per_message = 3
|
|
|
|
tokens_per_name = 1
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(
|
|
|
|
f"get_num_tokens_from_messages() is not presently implemented "
|
|
|
|
f"for model {model}."
|
|
|
|
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
|
|
|
"information on how messages are converted to tokens."
|
|
|
|
)
|
|
|
|
num_tokens = 0
|
|
|
|
messages_dict = [convert_message_to_dict(m) for m in messages]
|
|
|
|
for message in messages_dict:
|
|
|
|
num_tokens += tokens_per_message
|
|
|
|
for key, value in message.items():
|
|
|
|
# Cast str(value) in case the message value is not a string
|
|
|
|
# This occurs with function messages
|
|
|
|
num_tokens += len(encoding.encode(str(value)))
|
|
|
|
if key == "name":
|
|
|
|
num_tokens += tokens_per_name
|
|
|
|
# every reply is primed with <im_start>assistant
|
|
|
|
num_tokens += 3
|
|
|
|
return num_tokens
|
|
|
|
|
|
|
|
def bind_functions(
|
|
|
|
self,
|
|
|
|
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
|
|
|
|
function_call: Optional[str] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
|
|
"""Bind functions (and other objects) to this chat model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
functions: A list of function definitions to bind to this chat model.
|
|
|
|
Can be a dictionary, pydantic model, or callable. Pydantic
|
|
|
|
models and callables will be automatically converted to
|
|
|
|
their schema dictionary representation.
|
|
|
|
function_call: Which function to require the model to call.
|
|
|
|
Must be the name of the single provided function or
|
|
|
|
"auto" to automatically determine which function to call
|
|
|
|
(if any).
|
|
|
|
kwargs: Any additional parameters to pass to the
|
|
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
|
|
"""
|
|
|
|
from langchain.chains.openai_functions.base import convert_to_openai_function
|
|
|
|
|
|
|
|
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
|
|
|
if function_call is not None:
|
|
|
|
if len(formatted_functions) != 1:
|
|
|
|
raise ValueError(
|
|
|
|
"When specifying `function_call`, you must provide exactly one "
|
|
|
|
"function."
|
|
|
|
)
|
|
|
|
if formatted_functions[0]["name"] != function_call:
|
|
|
|
raise ValueError(
|
|
|
|
f"Function call {function_call} was specified, but the only "
|
|
|
|
f"provided function was {formatted_functions[0]['name']}."
|
|
|
|
)
|
|
|
|
function_call_ = {"name": function_call}
|
|
|
|
kwargs = {**kwargs, "function_call": function_call_}
|
|
|
|
return super().bind(
|
|
|
|
functions=formatted_functions,
|
|
|
|
**kwargs,
|
|
|
|
)
|