2023-12-11 21:53:30 +00:00
|
|
|
import logging
|
|
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, cast
|
|
|
|
|
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
ChatMessage,
|
|
|
|
FunctionMessage,
|
|
|
|
HumanMessage,
|
|
|
|
SystemMessage,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_message_to_dict(message: BaseMessage) -> dict:
|
|
|
|
"""Convert a message to a dictionary that can be passed to the API."""
|
|
|
|
message_dict: Dict[str, Any]
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
if "function_call" in message.additional_kwargs:
|
|
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
|
|
# If function call only, content is None not empty string
|
|
|
|
if message_dict["content"] == "":
|
|
|
|
message_dict["content"] = None
|
|
|
|
elif isinstance(message, FunctionMessage):
|
|
|
|
message_dict = {
|
|
|
|
"role": "function",
|
|
|
|
"content": message.content,
|
|
|
|
"name": message.name,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage:
|
|
|
|
content = _dict.get("result", "") or ""
|
|
|
|
if _dict.get("function_call"):
|
|
|
|
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
|
|
|
if "thoughts" in additional_kwargs["function_call"]:
|
|
|
|
# align to api sample, which affects the llm function_call output
|
|
|
|
additional_kwargs["function_call"].pop("thoughts")
|
|
|
|
else:
|
|
|
|
additional_kwargs = {}
|
|
|
|
return AIMessage(
|
|
|
|
content=content,
|
|
|
|
additional_kwargs={**_dict.get("body", {}), **additional_kwargs},
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class QianfanChatEndpoint(BaseChatModel):
|
|
|
|
"""Baidu Qianfan chat models.
|
|
|
|
|
|
|
|
To use, you should have the ``qianfan`` python package installed, and
|
|
|
|
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with your
|
|
|
|
API key and Secret Key.
|
|
|
|
|
|
|
|
ak, sk are required parameters
|
|
|
|
which you could get from https://cloud.baidu.com/product/wenxinworkshop
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import QianfanChatEndpoint
|
|
|
|
qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot",
|
|
|
|
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
|
|
|
|
"""
|
|
|
|
|
2024-01-01 21:12:31 +00:00
|
|
|
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""init kwargs for qianfan client init, such as `query_per_second` which is
|
|
|
|
associated with qianfan resource object to limit QPS"""
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
2024-01-01 21:12:31 +00:00
|
|
|
"""extra params for model invoke using with `do`."""
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
client: Any
|
|
|
|
|
|
|
|
qianfan_ak: Optional[SecretStr] = None
|
|
|
|
qianfan_sk: Optional[SecretStr] = None
|
|
|
|
|
|
|
|
streaming: Optional[bool] = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
|
|
|
|
request_timeout: Optional[int] = 60
|
|
|
|
"""request timeout for chat http requests"""
|
|
|
|
|
|
|
|
top_p: Optional[float] = 0.8
|
|
|
|
temperature: Optional[float] = 0.95
|
|
|
|
penalty_score: Optional[float] = 1
|
|
|
|
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
|
|
|
|
In the case of other model, passing these params will not affect the result.
|
|
|
|
"""
|
|
|
|
|
|
|
|
model: str = "ERNIE-Bot-turbo"
|
|
|
|
"""Model name.
|
|
|
|
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
|
|
|
|
|
|
|
|
preset models are mapping to an endpoint.
|
|
|
|
`model` will be ignored if `endpoint` is set.
|
|
|
|
Default is ERNIE-Bot-turbo.
|
|
|
|
"""
|
|
|
|
|
|
|
|
endpoint: Optional[str] = None
|
|
|
|
"""Endpoint of the Qianfan LLM, required if custom model used."""
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
values["qianfan_ak"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"qianfan_ak",
|
|
|
|
"QIANFAN_AK",
|
2023-12-20 05:49:33 +00:00
|
|
|
default="",
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
)
|
|
|
|
values["qianfan_sk"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"qianfan_sk",
|
|
|
|
"QIANFAN_SK",
|
2023-12-20 05:49:33 +00:00
|
|
|
default="",
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
)
|
|
|
|
params = {
|
2024-01-01 21:12:31 +00:00
|
|
|
**values.get("init_kwargs", {}),
|
2023-12-11 21:53:30 +00:00
|
|
|
"model": values["model"],
|
|
|
|
"stream": values["streaming"],
|
|
|
|
}
|
2023-12-20 05:49:33 +00:00
|
|
|
if values["qianfan_ak"].get_secret_value() != "":
|
|
|
|
params["ak"] = values["qianfan_ak"].get_secret_value()
|
|
|
|
if values["qianfan_sk"].get_secret_value() != "":
|
|
|
|
params["sk"] = values["qianfan_sk"].get_secret_value()
|
2023-12-11 21:53:30 +00:00
|
|
|
if values["endpoint"] is not None and values["endpoint"] != "":
|
|
|
|
params["endpoint"] = values["endpoint"]
|
|
|
|
try:
|
|
|
|
import qianfan
|
|
|
|
|
|
|
|
values["client"] = qianfan.ChatCompletion(**params)
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"qianfan package not found, please install it with "
|
|
|
|
"`pip install qianfan`"
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
|
|
return {
|
|
|
|
**{"endpoint": self.endpoint, "model": self.model},
|
|
|
|
**super()._identifying_params,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of chat_model."""
|
|
|
|
return "baidu-qianfan-chat"
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling Qianfan API."""
|
|
|
|
normal_params = {
|
|
|
|
"model": self.model,
|
|
|
|
"endpoint": self.endpoint,
|
|
|
|
"stream": self.streaming,
|
|
|
|
"request_timeout": self.request_timeout,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"penalty_score": self.penalty_score,
|
|
|
|
}
|
|
|
|
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
|
|
|
|
def _convert_prompt_msg_params(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
"""
|
|
|
|
Converts a list of messages into a dictionary containing the message content
|
|
|
|
and default parameters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
messages (List[BaseMessage]): The list of messages.
|
|
|
|
**kwargs (Any): Optional arguments to add additional parameters to the
|
|
|
|
resulting dictionary.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Dict[str, Any]: A dictionary containing the message content and default
|
|
|
|
parameters.
|
|
|
|
|
|
|
|
"""
|
|
|
|
messages_dict: Dict[str, Any] = {
|
|
|
|
"messages": [
|
|
|
|
convert_message_to_dict(m)
|
|
|
|
for m in messages
|
|
|
|
if not isinstance(m, SystemMessage)
|
|
|
|
]
|
|
|
|
}
|
|
|
|
for i in [i for i, m in enumerate(messages) if isinstance(m, SystemMessage)]:
|
|
|
|
if "system" not in messages_dict:
|
|
|
|
messages_dict["system"] = ""
|
|
|
|
messages_dict["system"] += cast(str, messages[i].content) + "\n"
|
|
|
|
|
|
|
|
return {
|
|
|
|
**messages_dict,
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
"""Call out to an qianfan models endpoint for each generation with a prompt.
|
|
|
|
Args:
|
|
|
|
messages: The messages to pass into the model.
|
|
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
|
|
The string generated by the model.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
response = qianfan_model("Tell me a joke.")
|
|
|
|
"""
|
|
|
|
if self.streaming:
|
|
|
|
completion = ""
|
2024-01-09 23:29:25 +00:00
|
|
|
token_usage = {}
|
|
|
|
chat_generation_info: Dict = {}
|
2023-12-11 21:53:30 +00:00
|
|
|
for chunk in self._stream(messages, stop, run_manager, **kwargs):
|
2024-01-09 23:29:25 +00:00
|
|
|
chat_generation_info = (
|
|
|
|
chunk.generation_info
|
|
|
|
if chunk.generation_info is not None
|
|
|
|
else chat_generation_info
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
completion += chunk.text
|
|
|
|
lc_msg = AIMessage(content=completion, additional_kwargs={})
|
|
|
|
gen = ChatGeneration(
|
|
|
|
message=lc_msg,
|
|
|
|
generation_info=dict(finish_reason="stop"),
|
|
|
|
)
|
|
|
|
return ChatResult(
|
|
|
|
generations=[gen],
|
2024-01-09 23:29:25 +00:00
|
|
|
llm_output={
|
|
|
|
"token_usage": chat_generation_info.get("usage", {}),
|
|
|
|
"model_name": self.model,
|
|
|
|
},
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
|
|
response_payload = self.client.do(**params)
|
|
|
|
lc_msg = _convert_dict_to_message(response_payload)
|
|
|
|
gen = ChatGeneration(
|
|
|
|
message=lc_msg,
|
|
|
|
generation_info={
|
|
|
|
"finish_reason": "stop",
|
|
|
|
**response_payload.get("body", {}),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
token_usage = response_payload.get("usage", {})
|
|
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model}
|
|
|
|
return ChatResult(generations=[gen], llm_output=llm_output)
|
|
|
|
|
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
completion = ""
|
|
|
|
token_usage = {}
|
2024-01-09 23:29:25 +00:00
|
|
|
chat_generation_info: Dict = {}
|
2023-12-11 21:53:30 +00:00
|
|
|
async for chunk in self._astream(messages, stop, run_manager, **kwargs):
|
2024-01-09 23:29:25 +00:00
|
|
|
chat_generation_info = (
|
|
|
|
chunk.generation_info
|
|
|
|
if chunk.generation_info is not None
|
|
|
|
else chat_generation_info
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
completion += chunk.text
|
|
|
|
|
|
|
|
lc_msg = AIMessage(content=completion, additional_kwargs={})
|
|
|
|
gen = ChatGeneration(
|
|
|
|
message=lc_msg,
|
|
|
|
generation_info=dict(finish_reason="stop"),
|
|
|
|
)
|
|
|
|
return ChatResult(
|
|
|
|
generations=[gen],
|
2024-01-09 23:29:25 +00:00
|
|
|
llm_output={
|
|
|
|
"token_usage": chat_generation_info.get("usage", {}),
|
|
|
|
"model_name": self.model,
|
|
|
|
},
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
|
|
|
response_payload = await self.client.ado(**params)
|
|
|
|
lc_msg = _convert_dict_to_message(response_payload)
|
|
|
|
generations = []
|
|
|
|
gen = ChatGeneration(
|
|
|
|
message=lc_msg,
|
|
|
|
generation_info={
|
|
|
|
"finish_reason": "stop",
|
|
|
|
**response_payload.get("body", {}),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
generations.append(gen)
|
|
|
|
token_usage = response_payload.get("usage", {})
|
|
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
2024-01-09 23:29:25 +00:00
|
|
|
params["stream"] = True
|
2023-12-11 21:53:30 +00:00
|
|
|
for res in self.client.do(**params):
|
|
|
|
if res:
|
|
|
|
msg = _convert_dict_to_message(res)
|
2024-01-09 23:29:25 +00:00
|
|
|
additional_kwargs = msg.additional_kwargs.get("function_call", {})
|
2023-12-11 21:53:30 +00:00
|
|
|
chunk = ChatGenerationChunk(
|
|
|
|
text=res["result"],
|
|
|
|
message=AIMessageChunk(
|
|
|
|
content=msg.content,
|
|
|
|
role="assistant",
|
2024-01-09 23:29:25 +00:00
|
|
|
additional_kwargs=additional_kwargs,
|
2023-12-11 21:53:30 +00:00
|
|
|
),
|
2024-01-09 23:29:25 +00:00
|
|
|
generation_info=msg.additional_kwargs,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
params = self._convert_prompt_msg_params(messages, **kwargs)
|
2024-01-09 23:29:25 +00:00
|
|
|
params["stream"] = True
|
2023-12-11 21:53:30 +00:00
|
|
|
async for res in await self.client.ado(**params):
|
|
|
|
if res:
|
|
|
|
msg = _convert_dict_to_message(res)
|
2024-01-09 23:29:25 +00:00
|
|
|
additional_kwargs = msg.additional_kwargs.get("function_call", {})
|
2023-12-11 21:53:30 +00:00
|
|
|
chunk = ChatGenerationChunk(
|
|
|
|
text=res["result"],
|
|
|
|
message=AIMessageChunk(
|
|
|
|
content=msg.content,
|
|
|
|
role="assistant",
|
2024-01-09 23:29:25 +00:00
|
|
|
additional_kwargs=additional_kwargs,
|
2023-12-11 21:53:30 +00:00
|
|
|
),
|
2024-01-09 23:29:25 +00:00
|
|
|
generation_info=msg.additional_kwargs,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|