langchain/libs/community/langchain_community/callbacks/trubrics_callback.py

126 lines
4.4 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
import os
from typing import Any, Dict, List, Optional
from uuid import UUID
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import LLMResult
def _convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
# If function call only, content is None not empty string
if message_dict["content"] == "":
message_dict["content"] = None
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise TypeError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
class TrubricsCallbackHandler(BaseCallbackHandler):
"""
Callback handler for Trubrics.
Args:
project: a trubrics project, default project is "default"
email: a trubrics account email, can equally be set in env variables
password: a trubrics account password, can equally be set in env variables
**kwargs: all other kwargs are parsed and set to trubrics prompt variables,
or added to the `metadata` dict
"""
def __init__(
self,
project: str = "default",
email: Optional[str] = None,
password: Optional[str] = None,
**kwargs: Any,
) -> None:
super().__init__()
try:
from trubrics import Trubrics
except ImportError:
raise ImportError(
"The TrubricsCallbackHandler requires installation of "
"the trubrics package. "
"Please install it with `pip install trubrics`."
)
self.trubrics = Trubrics(
project=project,
email=email or os.environ["TRUBRICS_EMAIL"],
password=password or os.environ["TRUBRICS_PASSWORD"],
)
self.config_model: dict = {}
self.prompt: Optional[str] = None
self.messages: Optional[list] = None
self.trubrics_kwargs: Optional[dict] = kwargs if kwargs else None
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
self.prompt = prompts[0]
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> None:
self.messages = [_convert_message_to_dict(message) for message in messages[0]]
self.prompt = self.messages[-1]["content"]
def on_llm_end(self, response: LLMResult, run_id: UUID, **kwargs: Any) -> None:
tags = ["langchain"]
user_id = None
session_id = None
metadata: dict = {"langchain_run_id": run_id}
if self.messages:
metadata["messages"] = self.messages
if self.trubrics_kwargs:
if self.trubrics_kwargs.get("tags"):
tags.append(*self.trubrics_kwargs.pop("tags"))
user_id = self.trubrics_kwargs.pop("user_id", None)
session_id = self.trubrics_kwargs.pop("session_id", None)
metadata.update(self.trubrics_kwargs)
for generation in response.generations:
self.trubrics.log_prompt(
config_model={
"model": response.llm_output.get("model_name")
if response.llm_output
else "NA"
},
prompt=self.prompt,
generation=generation[0].text,
user_id=user_id,
session_id=session_id,
tags=tags,
metadata=metadata,
)