2023-11-13 22:45:24 +00:00
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG based on Qianfan and BES"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook is an implementation of Retrieval augmented generation (RAG) using Baidu Qianfan Platform combined with Baidu ElasricSearch, where the original data is located on BOS.\n",
"## Baidu Qianfan\n",
"Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open-source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n",
"\n",
"## Baidu ElasticSearch\n",
"[Baidu Cloud VectorSearch](https://cloud.baidu.com/doc/BES/index.html?from=productToDoc) is a fully managed, enterprise-level distributed search and analysis service which is 100% compatible to open source. Baidu Cloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation and Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install qianfan\n",
"#!pip install bce-python-sdk\n",
2023-12-07 23:47:48 +00:00
"#!pip install elasticsearch == 7.11.0\n",
"#!pip install sentence-transformers"
2023-11-13 22:45:24 +00:00
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2023-12-07 23:47:48 +00:00
"import sentence_transformers\n",
2023-11-13 22:45:24 +00:00
"from baidubce.auth.bce_credentials import BceCredentials\n",
2023-11-14 22:17:44 +00:00
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
2023-12-07 23:47:48 +00:00
"from langchain.chains.retrieval_qa import RetrievalQA\n",
2023-11-14 22:17:44 +00:00
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
2024-01-02 21:47:11 +00:00
"from langchain_community.document_loaders.baiducloud_bos_directory import (\n",
" BaiduBOSDirectoryLoader,\n",
")\n",
2024-01-02 20:32:16 +00:00
"from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings\n",
2024-01-02 21:47:11 +00:00
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain_community.vectorstores import BESVectorStore"
2023-11-13 22:45:24 +00:00
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Document loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bos_host = \"your bos eddpoint\"\n",
"access_key_id = \"your bos access ak\"\n",
"secret_access_key = \"your bos access sk\"\n",
"\n",
"# create BceClientConfiguration\n",
2023-11-14 20:58:22 +00:00
"config = BceClientConfiguration(\n",
" credentials=BceCredentials(access_key_id, secret_access_key), endpoint=bos_host\n",
")\n",
2023-11-13 22:45:24 +00:00
"\n",
"loader = BaiduBOSDirectoryLoader(conf=config, bucket=\"llm-test\", prefix=\"llm/\")\n",
"documents = loader.load()\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)\n",
"split_docs = text_splitter.split_documents(documents)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Embedding and VectorStore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = HuggingFaceEmbeddings(model_name=\"shibing624/text2vec-base-chinese\")\n",
"embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name)\n",
"\n",
"db = BESVectorStore.from_documents(\n",
2023-11-14 20:58:22 +00:00
" documents=split_docs,\n",
" embedding=embeddings,\n",
" bes_url=\"your bes url\",\n",
" index_name=\"test-index\",\n",
" vector_query_field=\"vector\",\n",
")\n",
2023-11-13 22:45:24 +00:00
"\n",
2023-11-14 20:58:22 +00:00
"db.client.indices.refresh(index=\"test-index\")\n",
2023-11-13 22:45:24 +00:00
"retriever = db.as_retriever()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## QA Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2023-11-14 20:58:22 +00:00
"llm = QianfanLLMEndpoint(\n",
" model=\"ERNIE-Bot\",\n",
" qianfan_ak=\"your qianfan ak\",\n",
" qianfan_sk=\"your qianfan sk\",\n",
" streaming=True,\n",
")\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"refine\", retriever=retriever, return_source_documents=True\n",
")\n",
2023-11-13 22:45:24 +00:00
"\n",
"query = \"什么是张量?\"\n",
"print(qa.run(query))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"> 张量( Tensor) 是一个数学概念, 用于表示多维数据。它是一个可以表示多个数值的数组, 可以是标量、向量、矩阵等。在深度学习和人工智能领域中, 张量常用于表示神经网络的输入、输出和权重等。"
]
}
],
"metadata": {
"kernelspec": {
2023-12-07 23:47:48 +00:00
"display_name": "Python 3 (ipykernel)",
2023-11-13 22:45:24 +00:00
"language": "python",
"name": "python3"
},
"language_info": {
2023-12-07 23:47:48 +00:00
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
2023-11-13 22:45:24 +00:00
"name": "python",
2023-12-07 23:47:48 +00:00
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
2023-11-13 22:45:24 +00:00
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
2023-12-07 23:47:48 +00:00
"nbformat_minor": 4
2023-11-13 22:45:24 +00:00
}