2023-11-10 18:51:52 +00:00
|
|
|
"""Test FastEmbed embeddings."""
|
|
|
|
import pytest
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
2023-11-10 18:51:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
|
|
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
|
|
|
@pytest.mark.parametrize("threads", [0, 10])
|
|
|
|
def test_fastembed_embedding_documents(
|
|
|
|
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
|
|
|
) -> None:
|
|
|
|
"""Test fastembed embeddings for documents."""
|
|
|
|
documents = ["foo bar", "bar foo"]
|
|
|
|
embedding = FastEmbedEmbeddings(
|
|
|
|
model_name=model_name,
|
|
|
|
max_length=max_length,
|
|
|
|
doc_embed_type=doc_embed_type,
|
|
|
|
threads=threads,
|
|
|
|
)
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
assert len(output) == 2
|
|
|
|
assert len(output[0]) == 384
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
|
|
def test_fastembed_embedding_query(model_name: str, max_length: int) -> None:
|
|
|
|
"""Test fastembed embeddings for query."""
|
|
|
|
document = "foo bar"
|
|
|
|
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
|
|
|
output = embedding.embed_query(document)
|
|
|
|
assert len(output) == 384
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
|
|
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
|
|
|
@pytest.mark.parametrize("threads", [0, 10])
|
|
|
|
async def test_fastembed_async_embedding_documents(
|
|
|
|
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
|
|
|
) -> None:
|
|
|
|
"""Test fastembed embeddings for documents."""
|
|
|
|
documents = ["foo bar", "bar foo"]
|
|
|
|
embedding = FastEmbedEmbeddings(
|
|
|
|
model_name=model_name,
|
|
|
|
max_length=max_length,
|
|
|
|
doc_embed_type=doc_embed_type,
|
|
|
|
threads=threads,
|
|
|
|
)
|
|
|
|
output = await embedding.aembed_documents(documents)
|
|
|
|
assert len(output) == 2
|
|
|
|
assert len(output[0]) == 384
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
|
|
async def test_fastembed_async_embedding_query(
|
|
|
|
model_name: str, max_length: int
|
|
|
|
) -> None:
|
|
|
|
"""Test fastembed embeddings for query."""
|
|
|
|
document = "foo bar"
|
|
|
|
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
|
|
|
output = await embedding.aembed_query(document)
|
|
|
|
assert len(output) == 384
|