2023-11-08 20:37:17 +00:00
|
|
|
"""Test openai embeddings."""
|
|
|
|
import os
|
|
|
|
from typing import Any
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
2023-11-08 20:37:17 +00:00
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
|
|
|
|
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
|
|
|
|
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
|
|
|
|
DEPLOYMENT_NAME = os.environ.get(
|
|
|
|
"AZURE_OPENAI_DEPLOYMENT_NAME",
|
|
|
|
os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""),
|
|
|
|
)
|
|
|
|
|
2023-11-08 20:37:17 +00:00
|
|
|
|
|
|
|
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
|
|
|
|
return AzureOpenAIEmbeddings(
|
2023-12-08 18:23:02 +00:00
|
|
|
azure_deployment=DEPLOYMENT_NAME,
|
|
|
|
api_version=OPENAI_API_VERSION,
|
|
|
|
openai_api_base=OPENAI_API_BASE,
|
|
|
|
openai_api_key=OPENAI_API_KEY,
|
2023-11-08 20:37:17 +00:00
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
def test_azure_openai_embedding_documents() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
documents = ["foo bar"]
|
|
|
|
embedding = _get_embeddings()
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
assert len(output) == 1
|
|
|
|
assert len(output[0]) == 1536
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
def test_azure_openai_embedding_documents_multiple() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
documents = ["foo bar", "bar foo", "foo"]
|
|
|
|
embedding = _get_embeddings(chunk_size=2)
|
|
|
|
embedding.embedding_ctx_length = 8191
|
|
|
|
output = embedding.embed_documents(documents)
|
2023-11-20 02:34:51 +00:00
|
|
|
assert embedding.chunk_size == 2
|
2023-11-08 20:37:17 +00:00
|
|
|
assert len(output) == 3
|
|
|
|
assert len(output[0]) == 1536
|
|
|
|
assert len(output[1]) == 1536
|
|
|
|
assert len(output[2]) == 1536
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-20 02:34:51 +00:00
|
|
|
def test_azure_openai_embedding_documents_chunk_size() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
documents = ["foo bar"] * 20
|
|
|
|
embedding = _get_embeddings()
|
|
|
|
embedding.embedding_ctx_length = 8191
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
# Max 16 chunks per batch on Azure OpenAI embeddings
|
|
|
|
assert embedding.chunk_size == 16
|
|
|
|
assert len(output) == 20
|
|
|
|
assert all([len(out) == 1536 for out in output])
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
async def test_azure_openai_embedding_documents_async_multiple() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
documents = ["foo bar", "bar foo", "foo"]
|
|
|
|
embedding = _get_embeddings(chunk_size=2)
|
|
|
|
embedding.embedding_ctx_length = 8191
|
|
|
|
output = await embedding.aembed_documents(documents)
|
|
|
|
assert len(output) == 3
|
|
|
|
assert len(output[0]) == 1536
|
|
|
|
assert len(output[1]) == 1536
|
|
|
|
assert len(output[2]) == 1536
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
def test_azure_openai_embedding_query() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
document = "foo bar"
|
|
|
|
embedding = _get_embeddings()
|
|
|
|
output = embedding.embed_query(document)
|
|
|
|
assert len(output) == 1536
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
async def test_azure_openai_embedding_async_query() -> None:
|
|
|
|
"""Test openai embeddings."""
|
|
|
|
document = "foo bar"
|
|
|
|
embedding = _get_embeddings()
|
|
|
|
output = await embedding.aembed_query(document)
|
|
|
|
assert len(output) == 1536
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
|
|
|
|
def test_azure_openai_embedding_with_empty_string() -> None:
|
|
|
|
"""Test openai embeddings with empty string."""
|
|
|
|
import openai
|
|
|
|
|
|
|
|
document = ["", "abc"]
|
|
|
|
embedding = _get_embeddings()
|
|
|
|
output = embedding.embed_documents(document)
|
|
|
|
assert len(output) == 2
|
|
|
|
assert len(output[0]) == 1536
|
|
|
|
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
|
|
|
|
"data"
|
|
|
|
][0]["embedding"]
|
|
|
|
assert np.allclose(output[0], expected_output)
|
|
|
|
assert len(output[1]) == 1536
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
def test_embed_documents_normalized() -> None:
|
|
|
|
output = _get_embeddings().embed_documents(["foo walked to the market"])
|
|
|
|
assert np.isclose(np.linalg.norm(output[0]), 1.0)
|
|
|
|
|
|
|
|
|
2023-12-08 18:23:02 +00:00
|
|
|
@pytest.mark.scheduled
|
2023-11-08 20:37:17 +00:00
|
|
|
def test_embed_query_normalized() -> None:
|
|
|
|
output = _get_embeddings().embed_query("foo walked to the market")
|
|
|
|
assert np.isclose(np.linalg.norm(output), 1.0)
|