langchain/docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb

292 lines
9.8 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Zep Memory\n",
"\n",
"## Retriever Example\n",
"\n",
"This notebook demonstrates how to search historical chat message histories using the [Zep Long-term Memory Store](https://getzep.github.io/).\n",
"\n",
"We'll demonstrate:\n",
"\n",
"1. Adding conversation history to the Zep memory store.\n",
"2. Vector search over the conversation history.\n",
"\n",
"More on Zep:\n",
"\n",
"Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.\n",
"\n",
"Key Features:\n",
"\n",
"- Long-term memory persistence, with access to historical messages irrespective of your summarization strategy.\n",
"- Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies.\n",
"- Vector search over memories, with messages automatically embedded on creation.\n",
"- Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly.\n",
"- Python and JavaScript SDKs.\n",
"\n",
"Zep's Go Extractor model is easily extensible, with a simple, clean interface available to build new enrichment functionality, such as summarizers, entity extractors, embedders, and more.\n",
"\n",
"Zep project: [https://github.com/getzep/zep](https://github.com/getzep/zep)\n"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"from langchain.memory.chat_message_histories import ZepChatMessageHistory\n",
"from langchain.schema import HumanMessage, AIMessage\n",
"from uuid import uuid4\n",
"\n",
"# Set this to your Zep server URL\n",
"ZEP_API_URL = \"http://localhost:8000\"\n",
"\n",
"# Zep is async-first. Our sync APIs use an asyncio wrapper to run outside an app's event loop.\n",
"# This interferes with Jupyter's event loop, so we need to install nest_asyncio to run the\n",
"# Zep client in a notebook.\n",
"\n",
"# !pip install nest_asyncio # Uncomment to install nest_asyncio\n",
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:20.355017Z",
"start_time": "2023-05-18T20:09:19.526069Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"### Initialize the Zep Chat Message History Class and add a chat message history to the memory store\n",
"\n",
"**NOTE:** Unlike other Retrievers, the content returned by the Zep Retriever is session/user specific. A `session_id` is required when instantiating the Retriever."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"session_id = str(uuid4()) # This is a unique identifier for the user/session\n",
"\n",
"# Set up Zep Chat History. We'll use this to add chat histories to the memory store\n",
"zep_chat_history = ZepChatMessageHistory(\n",
" session_id=session_id,\n",
" url=ZEP_API_URL,\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:20.424764Z",
"start_time": "2023-05-18T20:09:20.355626Z"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"# Preload some messages into the memory. The default message window is 12 messages. We want to push beyond this to demonstrate auto-summarization.\n",
"test_history = [\n",
" {\"role\": \"human\", \"content\": \"Who was Octavia Butler?\"},\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": (\n",
" \"Octavia Estelle Butler (June 22, 1947 February 24, 2006) was an American\"\n",
" \" science fiction author.\"\n",
" ),\n",
" },\n",
" {\"role\": \"human\", \"content\": \"Which books of hers were made into movies?\"},\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": (\n",
" \"The most well-known adaptation of Octavia Butler's work is the FX series\"\n",
" \" Kindred, based on her novel of the same name.\"\n",
" ),\n",
" },\n",
" {\"role\": \"human\", \"content\": \"Who were her contemporaries?\"},\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": (\n",
" \"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R.\"\n",
" \" Delany, and Joanna Russ.\"\n",
" ),\n",
" },\n",
" {\"role\": \"human\", \"content\": \"What awards did she win?\"},\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": (\n",
" \"Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur\"\n",
" \" Fellowship.\"\n",
" ),\n",
" },\n",
" {\n",
" \"role\": \"human\",\n",
" \"content\": \"Which other women sci-fi writers might I want to read?\",\n",
" },\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": \"You might want to read Ursula K. Le Guin or Joanna Russ.\",\n",
" },\n",
" {\n",
" \"role\": \"human\",\n",
" \"content\": (\n",
" \"Write a short synopsis of Butler's book, Parable of the Sower. What is it\"\n",
" \" about?\"\n",
" ),\n",
" },\n",
" {\n",
" \"role\": \"ai\",\n",
" \"content\": (\n",
" \"Parable of the Sower is a science fiction novel by Octavia Butler,\"\n",
" \" published in 1993. It follows the story of Lauren Olamina, a young woman\"\n",
" \" living in a dystopian future where society has collapsed due to\"\n",
" \" environmental disasters, poverty, and violence.\"\n",
" ),\n",
" },\n",
"]\n",
"\n",
"for msg in test_history:\n",
" zep_chat_history.append(\n",
" HumanMessage(content=msg[\"content\"])\n",
" if msg[\"role\"] == \"human\"\n",
" else AIMessage(content=msg[\"content\"])\n",
" )\n"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:20.603865Z",
"start_time": "2023-05-18T20:09:20.427041Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"### Use the Zep Retriever to vector search over the Zep memory\n",
"\n",
"Zep provides native vector search over historical conversation memory. Embedding happens automatically.\n",
"\n",
"NOTE: Embedding of messages occurs asynchronously, so the first query may not return results. Subsequent queries will return results as the embeddings are generated."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [
{
"data": {
"text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8})]"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.retrievers import ZepRetriever\n",
"\n",
"zep_retriever = ZepRetriever(\n",
" session_id=session_id, # Ensure that you provide the session_id when instantiating the Retriever\n",
" url=ZEP_API_URL,\n",
" top_k=5,\n",
")\n",
"\n",
"await zep_retriever.aget_relevant_documents(\"Who wrote Parable of the Sower?\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:20.979411Z",
"start_time": "2023-05-18T20:09:20.604147Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"We can also use the Zep sync API to retrieve results:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"data": {
"text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8}),\n Document(page_content='Octavia Estelle Butler (June 22, 1947 February 24, 2006) was an American science fiction author.', metadata={'score': 0.7545887969667749, 'uuid': 'b32c0644-2dcb-4c1d-a445-6622e7ba82e5', 'created_at': '2023-05-18T20:09:20.512044Z', 'role': 'ai', 'token_count': 31})]"
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zep_retriever.get_relevant_documents(\"Who wrote Parable of the Sower?\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:21.296699Z",
"start_time": "2023-05-18T20:09:20.983624Z"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-05-18T20:09:21.298710Z",
"start_time": "2023-05-18T20:09:21.297169Z"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}