mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
126 lines
4.2 KiB
Python
126 lines
4.2 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from copy import deepcopy
|
||
|
from typing import Any, Dict, List, Optional, Sequence, Union
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import Callbacks
|
||
|
from langchain_core.documents import BaseDocumentCompressor, Document
|
||
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
JINA_API_URL: str = "https://api.jina.ai/v1/rerank"
|
||
|
|
||
|
|
||
|
class JinaRerank(BaseDocumentCompressor):
|
||
|
"""Document compressor that uses `Jina Rerank API`."""
|
||
|
|
||
|
session: Any = None
|
||
|
"""Requests session to communicate with API."""
|
||
|
top_n: Optional[int] = 3
|
||
|
"""Number of documents to return."""
|
||
|
model: str = "jina-reranker-v1-base-en"
|
||
|
"""Model to use for reranking."""
|
||
|
jina_api_key: Optional[str] = None
|
||
|
"""Jina API key. Must be specified directly or via environment variable
|
||
|
JINA_API_KEY."""
|
||
|
user_agent: str = "langchain"
|
||
|
"""Identifier for the application making the request."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
arbitrary_types_allowed = True
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key exists in environment."""
|
||
|
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
|
||
|
user_agent = values.get("user_agent", "langchain")
|
||
|
session = requests.Session()
|
||
|
session.headers.update(
|
||
|
{
|
||
|
"Authorization": f"Bearer {jina_api_key}",
|
||
|
"Accept-Encoding": "identity",
|
||
|
"Content-type": "application/json",
|
||
|
"user-agent": user_agent,
|
||
|
}
|
||
|
)
|
||
|
values["session"] = session
|
||
|
return values
|
||
|
|
||
|
def rerank(
|
||
|
self,
|
||
|
documents: Sequence[Union[str, Document, dict]],
|
||
|
query: str,
|
||
|
*,
|
||
|
model: Optional[str] = None,
|
||
|
top_n: Optional[int] = -1,
|
||
|
max_chunks_per_doc: Optional[int] = None,
|
||
|
) -> List[Dict[str, Any]]:
|
||
|
"""Returns an ordered list of documents ordered by their relevance to the provided query.
|
||
|
|
||
|
Args:
|
||
|
query: The query to use for reranking.
|
||
|
documents: A sequence of documents to rerank.
|
||
|
model: The model to use for re-ranking. Default to self.model.
|
||
|
top_n : The number of results to return. If None returns all results.
|
||
|
Defaults to self.top_n.
|
||
|
max_chunks_per_doc : The maximum number of chunks derived from a document.
|
||
|
""" # noqa: E501
|
||
|
if len(documents) == 0: # to avoid empty api call
|
||
|
return []
|
||
|
docs = [
|
||
|
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
||
|
]
|
||
|
model = model or self.model
|
||
|
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
|
||
|
data = {
|
||
|
"query": query,
|
||
|
"documents": docs,
|
||
|
"model": model,
|
||
|
"top_n": top_n,
|
||
|
}
|
||
|
|
||
|
resp = self.session.post(
|
||
|
JINA_API_URL,
|
||
|
json=data,
|
||
|
).json()
|
||
|
|
||
|
if "results" not in resp:
|
||
|
raise RuntimeError(resp["detail"])
|
||
|
|
||
|
results = resp["results"]
|
||
|
result_dicts = []
|
||
|
for res in results:
|
||
|
result_dicts.append(
|
||
|
{"index": res["index"], "relevance_score": res["relevance_score"]}
|
||
|
)
|
||
|
return result_dicts
|
||
|
|
||
|
def compress_documents(
|
||
|
self,
|
||
|
documents: Sequence[Document],
|
||
|
query: str,
|
||
|
callbacks: Optional[Callbacks] = None,
|
||
|
) -> Sequence[Document]:
|
||
|
"""
|
||
|
Compress documents using Jina's Rerank API.
|
||
|
|
||
|
Args:
|
||
|
documents: A sequence of documents to compress.
|
||
|
query: The query to use for compressing the documents.
|
||
|
callbacks: Callbacks to run during the compression process.
|
||
|
|
||
|
Returns:
|
||
|
A sequence of compressed documents.
|
||
|
"""
|
||
|
compressed = []
|
||
|
for res in self.rerank(documents, query):
|
||
|
doc = documents[res["index"]]
|
||
|
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
||
|
doc_copy.metadata["relevance_score"] = res["relevance_score"]
|
||
|
compressed.append(doc_copy)
|
||
|
return compressed
|