langchain/libs/community/langchain_community/embeddings/zhipuai.py

77 lines
2.6 KiB
Python
Raw Normal View History

from typing import Any, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.utils import get_from_dict_or_env
class ZhipuAIEmbeddings(BaseModel, Embeddings):
"""ZhipuAI embedding models.
To use, you should have the ``zhipuai`` python package installed, and the
environment variable ``ZHIPU_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
More instructions about ZhipuAi Embeddings, you can get it
from https://open.bigmodel.cn/dev/api#vector
Example:
.. code-block:: python
from langchain_community.embeddings import ZhipuAIEmbeddings
embeddings = ZhipuAIEmbeddings(api_key="your-api-key")
text = "This is a test query."
query_result = embeddings.embed_query(text)
# texts = ["This is a test query1.", "This is a test query2."]
# query_result = embeddings.embed_query(texts)
"""
_client: Any = Field(default=None, exclude=True) #: :meta private:
model: str = Field(default="embedding-2")
"""Model name"""
api_key: str
"""Automatically inferred from env var `ZHIPU_API_KEY` if not provided."""
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
values["api_key"] = get_from_dict_or_env(values, "api_key", "ZHIPUAI_API_KEY")
try:
from zhipuai import ZhipuAI
values["_client"] = ZhipuAI(api_key=values["api_key"])
except ImportError:
raise ImportError(
"Could not import zhipuai python package."
"Please install it with `pip install zhipuai`."
)
return values
def embed_query(self, text: str) -> List[float]:
"""
Embeds a text using the AutoVOT algorithm.
Args:
text: A text to embed.
Returns:
Input document's embedded list.
"""
resp = self.embed_documents([text])
return resp[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
Embeds a list of text documents using the AutoVOT algorithm.
Args:
texts: A list of text documents to embed.
Returns:
A list of embeddings for each document in the input list.
Each embedding is represented as a list of float values.
"""
resp = self._client.embeddings.create(model=self.model, input=texts)
embeddings = [r.embedding for r in resp.data]
return embeddings