mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
94 lines
2.2 KiB
Plaintext
94 lines
2.2 KiB
Plaintext
|
```python
|
||
|
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
||
|
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
||
|
from langchain.llms import OpenAI
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
```
|
||
|
|
||
|
Here we define the response schema we want to receive.
|
||
|
|
||
|
|
||
|
```python
|
||
|
response_schemas = [
|
||
|
ResponseSchema(name="answer", description="answer to the user's question"),
|
||
|
ResponseSchema(name="source", description="source used to answer the user's question, should be a website.")
|
||
|
]
|
||
|
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
|
||
|
```
|
||
|
|
||
|
We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt.
|
||
|
|
||
|
|
||
|
```python
|
||
|
format_instructions = output_parser.get_format_instructions()
|
||
|
prompt = PromptTemplate(
|
||
|
template="answer the users question as best as possible.\n{format_instructions}\n{question}",
|
||
|
input_variables=["question"],
|
||
|
partial_variables={"format_instructions": format_instructions}
|
||
|
)
|
||
|
```
|
||
|
|
||
|
We can now use this to format a prompt to send to the language model, and then parse the returned result.
|
||
|
|
||
|
|
||
|
```python
|
||
|
model = OpenAI(temperature=0)
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
_input = prompt.format_prompt(question="what's the capital of france?")
|
||
|
output = model(_input.to_string())
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
output_parser.parse(output)
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
{'answer': 'Paris',
|
||
|
'source': 'https://www.worldatlas.com/articles/what-is-the-capital-of-france.html'}
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
And here's an example of using this in a chat model
|
||
|
|
||
|
|
||
|
```python
|
||
|
chat_model = ChatOpenAI(temperature=0)
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
prompt = ChatPromptTemplate(
|
||
|
messages=[
|
||
|
HumanMessagePromptTemplate.from_template("answer the users question as best as possible.\n{format_instructions}\n{question}")
|
||
|
],
|
||
|
input_variables=["question"],
|
||
|
partial_variables={"format_instructions": format_instructions}
|
||
|
)
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
_input = prompt.format_prompt(question="what's the capital of france?")
|
||
|
output = chat_model(_input.to_messages())
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
output_parser.parse(output.content)
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|