2023-10-26 01:47:42 +00:00
|
|
|
# Load
|
|
|
|
import uuid
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.chat_models import ChatOpenAI
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.embeddings import OpenAIEmbeddings
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.prompts import ChatPromptTemplate
|
2023-11-01 00:13:44 +00:00
|
|
|
from langchain.pydantic_v1 import BaseModel
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.retrievers.multi_vector import MultiVectorRetriever
|
|
|
|
from langchain.schema.document import Document
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.schema.output_parser import StrOutputParser
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.schema.runnable import RunnablePassthrough
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.storage import InMemoryStore
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.vectorstores import Chroma
|
2023-10-26 01:47:42 +00:00
|
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
|
|
|
|
# Path to docs
|
|
|
|
path = "docs"
|
2023-10-27 02:44:30 +00:00
|
|
|
raw_pdf_elements = partition_pdf(
|
|
|
|
filename=path + "LLaMA2.pdf",
|
|
|
|
# Unstructured first finds embedded image blocks
|
|
|
|
extract_images_in_pdf=False,
|
|
|
|
# Use layout model (YOLOX) to get bounding boxes (for tables) and find titles
|
|
|
|
# Titles are any sub-section of the document
|
|
|
|
infer_table_structure=True,
|
|
|
|
# Post processing to aggregate text once we have the title
|
|
|
|
chunking_strategy="by_title",
|
|
|
|
# Chunking params to aggregate text blocks
|
|
|
|
# Attempt to create a new chunk 3800 chars
|
|
|
|
# Attempt to keep chunks > 2000 chars
|
|
|
|
max_characters=4000,
|
|
|
|
new_after_n_chars=3800,
|
|
|
|
combine_text_under_n_chars=2000,
|
|
|
|
image_output_dir_path=path,
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# Categorize by type
|
|
|
|
tables = []
|
|
|
|
texts = []
|
|
|
|
for element in raw_pdf_elements:
|
|
|
|
if "unstructured.documents.elements.Table" in str(type(element)):
|
|
|
|
tables.append(str(element))
|
|
|
|
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
|
|
|
|
texts.append(str(element))
|
|
|
|
|
|
|
|
# Summarize
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
prompt_text = """You are an assistant tasked with summarizing tables and text. \
|
2023-10-26 01:47:42 +00:00
|
|
|
Give a concise summary of the table or text. Table or text chunk: {element} """
|
2023-10-27 02:44:30 +00:00
|
|
|
prompt = ChatPromptTemplate.from_template(prompt_text)
|
|
|
|
model = ChatOpenAI(temperature=0, model="gpt-4")
|
|
|
|
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# Apply
|
|
|
|
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
|
|
|
|
# To save time / cost, only do text summaries if chunk sizes are large
|
|
|
|
# text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
|
2023-10-27 02:44:30 +00:00
|
|
|
# We can just assign text_summaries to the raw texts
|
2023-10-26 01:47:42 +00:00
|
|
|
text_summaries = texts
|
|
|
|
|
|
|
|
# Use multi vector retriever
|
|
|
|
|
|
|
|
# The vectorstore to use to index the child chunks
|
2023-10-27 02:44:30 +00:00
|
|
|
vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings())
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# The storage layer for the parent documents
|
|
|
|
store = InMemoryStore()
|
|
|
|
id_key = "doc_id"
|
|
|
|
|
|
|
|
# The retriever (empty to start)
|
|
|
|
retriever = MultiVectorRetriever(
|
2023-10-27 02:44:30 +00:00
|
|
|
vectorstore=vectorstore,
|
|
|
|
docstore=store,
|
2023-10-26 01:47:42 +00:00
|
|
|
id_key=id_key,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add texts
|
|
|
|
doc_ids = [str(uuid.uuid4()) for _ in texts]
|
2023-10-27 02:44:30 +00:00
|
|
|
summary_texts = [
|
|
|
|
Document(page_content=s, metadata={id_key: doc_ids[i]})
|
|
|
|
for i, s in enumerate(text_summaries)
|
|
|
|
]
|
2023-10-26 01:47:42 +00:00
|
|
|
retriever.vectorstore.add_documents(summary_texts)
|
|
|
|
retriever.docstore.mset(list(zip(doc_ids, texts)))
|
|
|
|
|
|
|
|
# Add tables
|
|
|
|
table_ids = [str(uuid.uuid4()) for _ in tables]
|
2023-10-27 02:44:30 +00:00
|
|
|
summary_tables = [
|
|
|
|
Document(page_content=s, metadata={id_key: table_ids[i]})
|
|
|
|
for i, s in enumerate(table_summaries)
|
|
|
|
]
|
2023-10-26 01:47:42 +00:00
|
|
|
retriever.vectorstore.add_documents(summary_tables)
|
|
|
|
retriever.docstore.mset(list(zip(table_ids, tables)))
|
|
|
|
|
|
|
|
# RAG
|
|
|
|
|
|
|
|
# Prompt template
|
|
|
|
template = """Answer the question based only on the following context, which can include text and tables:
|
|
|
|
{context}
|
|
|
|
Question: {question}
|
2023-10-27 02:44:30 +00:00
|
|
|
""" # noqa: E501
|
2023-10-26 01:47:42 +00:00
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
# LLM
|
2023-10-27 02:44:30 +00:00
|
|
|
model = ChatOpenAI(temperature=0, model="gpt-4")
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# RAG pipeline
|
|
|
|
chain = (
|
2023-10-27 02:44:30 +00:00
|
|
|
{"context": retriever, "question": RunnablePassthrough()}
|
|
|
|
| prompt
|
|
|
|
| model
|
2023-10-26 01:47:42 +00:00
|
|
|
| StrOutputParser()
|
2023-10-27 02:44:30 +00:00
|
|
|
)
|
2023-11-01 00:13:44 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
class Question(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|