langchain/tests/integration_tests/vectorstores/test_analyticdb.py

167 lines
6.0 KiB
Python
Raw Normal View History

"""Test PGVector functionality."""
import os
from typing import List
from langchain.docstore.document import Document
from langchain.vectorstores.analyticdb import AnalyticDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
CONNECTION_STRING = AnalyticDB.connection_string_from_db_params(
driver=os.environ.get("PG_DRIVER", "psycopg2cffi"),
host=os.environ.get("PG_HOST", "localhost"),
port=int(os.environ.get("PG_PORT", "5432")),
database=os.environ.get("PG_DATABASE", "postgres"),
user=os.environ.get("PG_USER", "postgres"),
password=os.environ.get("PG_PASSWORD", "postgres"),
)
ADA_TOKEN_COUNT = 1536
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [
[float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts))
]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
def test_analyticdb() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection",
embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_analyticdb_with_engine_args() -> None:
engine_args = {"pool_recycle": 3600, "pool_size": 50}
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection",
embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
engine_args=engine_args,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_analyticdb_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": "0"})]
def test_analyticdb_with_metadatas_with_scores() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search_with_score("foo", k=1)
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_analyticdb_with_filter_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"})
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_analyticdb_with_filter_distant_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
print(output)
assert output == [(Document(page_content="baz", metadata={"page": "2"}), 4.0)]
def test_analyticdb_with_filter_no_match() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection_filter",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"})
assert output == []
def test_analyticdb_delete() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
ids = ["fooid", "barid", "bazid"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = AnalyticDB.from_texts(
texts=texts,
collection_name="test_collection_delete",
embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas,
connection_string=CONNECTION_STRING,
ids=ids,
pre_delete_collection=True,
)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
print(output)
assert output == [(Document(page_content="baz", metadata={"page": "2"}), 4.0)]
docsearch.delete(ids=ids)
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
assert output == []