langchain/libs/langchain/tests/unit_tests/retrievers/test_svm.py

43 lines
1.6 KiB
Python
Raw Normal View History

import pytest
from langchain_core.documents import Document
from langchain.embeddings import FakeEmbeddings
from langchain.retrievers.svm import SVMRetriever
class TestSVMRetriever:
@pytest.mark.requires("sklearn")
def test_from_texts(self) -> None:
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
svm_retriever = SVMRetriever.from_texts(
texts=input_texts, embeddings=FakeEmbeddings(size=100)
)
assert len(svm_retriever.texts) == 3
@pytest.mark.requires("sklearn")
def test_from_documents(self) -> None:
input_docs = [
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
Document(page_content="Do you have a pen?"),
Document(page_content="I have a bag."),
]
svm_retriever = SVMRetriever.from_documents(
documents=input_docs, embeddings=FakeEmbeddings(size=100)
)
assert len(svm_retriever.texts) == 3
@pytest.mark.requires("sklearn")
def test_metadata_persists(self) -> None:
input_docs = [
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
Document(page_content="How about you?", metadata={"foo": "baz"}),
Document(page_content="I have a bag.", metadata={"foo": "qux"}),
]
svm_retriever = SVMRetriever.from_documents(
documents=input_docs, embeddings=FakeEmbeddings(size=100)
)
query = "Have anything?"
output_docs = svm_retriever.get_relevant_documents(query=query)
for doc in output_docs:
assert "foo" in doc.metadata