2023-10-26 01:47:42 +00:00
|
|
|
# Get LLM
|
|
|
|
import os
|
2023-10-27 02:44:30 +00:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
import requests
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.memory import ConversationBufferMemory
|
2024-01-03 21:28:05 +00:00
|
|
|
from langchain.utilities import SQLDatabase
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.llms import LlamaCpp
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
2024-01-03 21:28:05 +00:00
|
|
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
# File name and URL
|
|
|
|
file_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
2023-10-29 22:50:09 +00:00
|
|
|
url = (
|
|
|
|
"https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/"
|
|
|
|
"mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
# Check if file is present in the current directory
|
|
|
|
if not os.path.exists(file_name):
|
2024-02-10 00:13:30 +00:00
|
|
|
print(f"'{file_name}' not found. Downloading...") # noqa: T201
|
2023-10-26 01:47:42 +00:00
|
|
|
# Download the file
|
|
|
|
response = requests.get(url)
|
|
|
|
response.raise_for_status() # Raise an exception for HTTP errors
|
2023-10-27 02:44:30 +00:00
|
|
|
with open(file_name, "wb") as f:
|
2023-10-26 01:47:42 +00:00
|
|
|
f.write(response.content)
|
2024-02-10 00:13:30 +00:00
|
|
|
print(f"'{file_name}' has been downloaded.") # noqa: T201
|
2023-10-26 01:47:42 +00:00
|
|
|
else:
|
2024-02-10 00:13:30 +00:00
|
|
|
print(f"'{file_name}' already exists in the current directory.") # noqa: T201
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# Add the LLM downloaded from HF
|
|
|
|
model_path = file_name
|
|
|
|
n_gpu_layers = 1 # Metal set to 1 is enough.
|
2023-10-27 02:44:30 +00:00
|
|
|
|
|
|
|
# Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
|
|
|
|
n_batch = 512
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
llm = LlamaCpp(
|
|
|
|
model_path=model_path,
|
|
|
|
n_gpu_layers=n_gpu_layers,
|
|
|
|
n_batch=n_batch,
|
|
|
|
n_ctx=2048,
|
2023-10-27 02:44:30 +00:00
|
|
|
# f16_kv MUST set to True
|
|
|
|
# otherwise you will run into problem after a couple of calls
|
|
|
|
f16_kv=True,
|
2023-10-26 01:47:42 +00:00
|
|
|
verbose=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
db_path = Path(__file__).parent / "nba_roster.db"
|
|
|
|
rel = db_path.relative_to(Path.cwd())
|
|
|
|
db_string = f"sqlite:///{rel}"
|
|
|
|
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=0)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
def get_schema(_):
|
|
|
|
return db.get_table_info()
|
|
|
|
|
|
|
|
|
|
|
|
def run_query(query):
|
|
|
|
return db.run(query)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
# Prompt
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
template = """Based on the table schema below, write a SQL query that would answer the user's question:
|
|
|
|
{schema}
|
|
|
|
|
|
|
|
Question: {question}
|
2023-10-27 02:44:30 +00:00
|
|
|
SQL Query:""" # noqa: E501
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
|
|
|
|
MessagesPlaceholder(variable_name="history"),
|
|
|
|
("human", template),
|
|
|
|
]
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
memory = ConversationBufferMemory(return_messages=True)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
# Chain to query with memory
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
sql_chain = (
|
|
|
|
RunnablePassthrough.assign(
|
2023-10-27 02:44:30 +00:00
|
|
|
schema=get_schema,
|
|
|
|
history=RunnableLambda(lambda x: memory.load_memory_variables(x)["history"]),
|
|
|
|
)
|
|
|
|
| prompt
|
2023-10-26 01:47:42 +00:00
|
|
|
| llm.bind(stop=["\nSQLResult:"])
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
def save(input_output):
|
|
|
|
output = {"output": input_output.pop("output")}
|
|
|
|
memory.save_context(input_output, output)
|
2023-10-27 02:44:30 +00:00
|
|
|
return output["output"]
|
|
|
|
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save
|
|
|
|
|
|
|
|
# Chain to answer
|
|
|
|
template = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
|
|
|
|
{schema}
|
|
|
|
|
|
|
|
Question: {question}
|
|
|
|
SQL Query: {query}
|
2023-10-27 02:44:30 +00:00
|
|
|
SQL Response: {response}""" # noqa: E501
|
|
|
|
prompt_response = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
|
|
|
"Given an input question and SQL response, convert it to a natural "
|
|
|
|
"language answer. No pre-amble.",
|
|
|
|
),
|
|
|
|
("human", template),
|
|
|
|
]
|
|
|
|
)
|
2023-10-29 22:50:09 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Supply the input types to the prompt
|
2023-10-27 23:34:37 +00:00
|
|
|
class InputType(BaseModel):
|
|
|
|
question: str
|
2023-10-26 01:47:42 +00:00
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
chain = (
|
2023-10-29 22:50:09 +00:00
|
|
|
RunnablePassthrough.assign(query=sql_response_memory).with_types(
|
|
|
|
input_type=InputType
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
| RunnablePassthrough.assign(
|
|
|
|
schema=get_schema,
|
|
|
|
response=lambda x: db.run(x["query"]),
|
|
|
|
)
|
2023-10-27 02:44:30 +00:00
|
|
|
| prompt_response
|
2023-10-26 01:47:42 +00:00
|
|
|
| llm
|
|
|
|
)
|