langchain/tests/integration_tests/vectorstores/test_elasticsearch.py

43 lines
1.4 KiB
Python
Raw Normal View History

2022-11-20 04:32:45 +00:00
"""Test ElasticSearch functionality."""
from typing import List
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [[1.0] * 9 + [i] for i in range(len(texts))]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [1.0] * 9 + [0.0]
def test_elasticsearch() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = ElasticVectorSearch.from_texts(
texts, FakeEmbeddings(), elasticsearch_url="http://localhost:9200"
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_elasticsearch_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = ElasticVectorSearch.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
elasticsearch_url="http://localhost:9200",
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]