langchain/docs/extras/integrations/chat/ernie.ipynb

88 lines
1.9 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ERNIE-Bot Chat\n",
"\n",
"This notebook covers how to get started with Ernie chat models."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ErnieBotChat\n",
"from langchain.schema import AIMessage, HumanMessage, SystemMessage"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"chat = ErnieBotChat(ernie_client_id='YOUR_CLIENT_ID', ernie_client_secret='YOUR_CLIENT_SECRET')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"or you can set `client_id` and `client_secret` in your environment variables\n",
"```bash\n",
"export ERNIE_CLIENT_ID=YOUR_CLIENT_ID\n",
"export ERNIE_CLIENT_SECRET=YOUR_CLIENT_SECRET\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello, I am an artificial intelligence language model. My purpose is to help users answer questions or provide information. What can I do for you?', additional_kwargs={}, example=False)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat([\n",
" HumanMessage(content='hello there, who are you?')\n",
"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}