mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
126 lines
2.5 KiB
Plaintext
126 lines
2.5 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# C Transformers\n",
|
||
|
"\n",
|
||
|
"The [C Transformers](https://github.com/marella/ctransformers) library provides Python bindings for GGML models.\n",
|
||
|
"\n",
|
||
|
"This example goes over how to use LangChain to interact with `C Transformers` [models](https://github.com/marella/ctransformers#supported-models)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"**Install**"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%pip install ctransformers"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"**Load Model**"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.llms import CTransformers\n",
|
||
|
"\n",
|
||
|
"llm = CTransformers(model='marella/gpt-2-ggml')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"**Generate Text**"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(llm('AI is going to'))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"**Streaming**"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
||
|
"\n",
|
||
|
"llm = CTransformers(model='marella/gpt-2-ggml', callbacks=[StreamingStdOutCallbackHandler()])\n",
|
||
|
"\n",
|
||
|
"response = llm('AI is going to')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"**LLMChain**"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain import PromptTemplate, LLMChain\n",
|
||
|
"\n",
|
||
|
"template = \"\"\"Question: {question}\n",
|
||
|
"\n",
|
||
|
"Answer:\"\"\"\n",
|
||
|
"\n",
|
||
|
"prompt = PromptTemplate(template=template, input_variables=['question'])\n",
|
||
|
"\n",
|
||
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||
|
"\n",
|
||
|
"response = llm_chain.run('What is AI?')"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"language_info": {
|
||
|
"name": "python"
|
||
|
},
|
||
|
"orig_nbformat": 4
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|