langchain/tests/unit_tests/test_cache.py

166 lines
5.3 KiB
Python
Raw Normal View History

"""Test caching for LLMs and ChatModels."""
from typing import Dict, Generator, List, Union
import pytest
from _pytest.fixtures import FixtureRequest
from sqlalchemy import create_engine
from sqlalchemy.orm import Session
import langchain
from langchain.cache import (
InMemoryCache,
SQLAlchemyCache,
)
from langchain.chat_models import FakeListChatModel
from langchain.chat_models.base import BaseChatModel, dumps
from langchain.llms import FakeListLLM
from langchain.llms.base import BaseLLM
from langchain.schema import (
ChatGeneration,
Generation,
)
from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage
def get_sqlite_cache() -> SQLAlchemyCache:
return SQLAlchemyCache(engine=create_engine("sqlite://"))
CACHE_OPTIONS = [
InMemoryCache,
get_sqlite_cache,
]
@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
# Will be run before each test
cache_instance = request.param
langchain.llm_cache = cache_instance()
if langchain.llm_cache:
langchain.llm_cache.clear()
else:
raise ValueError("Cache not set. This should never happen.")
yield
# Will be run after each test
if langchain.llm_cache:
langchain.llm_cache.clear()
langchain.llm_cache = None
else:
raise ValueError("Cache not set. This should never happen.")
def test_llm_caching() -> None:
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
assert llm(prompt) == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_old_sqlite_llm_caching() -> None:
if isinstance(langchain.llm_cache, SQLAlchemyCache):
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
items = [
langchain.llm_cache.cache_schema(
prompt=prompt,
llm=create_llm_string(llm),
response=cached_response,
idx=0,
)
]
with Session(langchain.llm_cache.engine) as session, session.begin():
for item in items:
session.merge(item)
assert llm(prompt) == cached_response
def test_chat_model_caching() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_chat_model_caching_params() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(functions=[]),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm(prompt, functions=[])
assert isinstance(result, AIMessage)
assert result.content == cached_response
result_no_params = llm(prompt)
assert isinstance(result_no_params, AIMessage)
assert result_no_params.content == response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_llm_cache_clear() -> None:
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
langchain.llm_cache.clear()
assert llm(prompt) == response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
_dict: Dict = llm.dict()
_dict["stop"] = None
return str(sorted([(k, v) for k, v in _dict.items()]))