mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
128 lines
4.0 KiB
Python
128 lines
4.0 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import pickle
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Dict, Iterable, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
|
||
|
class TFIDFRetriever(BaseRetriever):
|
||
|
"""`TF-IDF` retriever.
|
||
|
|
||
|
Largely based on
|
||
|
https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb
|
||
|
"""
|
||
|
|
||
|
vectorizer: Any
|
||
|
"""TF-IDF vectorizer."""
|
||
|
docs: List[Document]
|
||
|
"""Documents."""
|
||
|
tfidf_array: Any
|
||
|
"""TF-IDF array."""
|
||
|
k: int = 4
|
||
|
"""Number of documents to return."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
arbitrary_types_allowed = True
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[Iterable[dict]] = None,
|
||
|
tfidf_params: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> TFIDFRetriever:
|
||
|
try:
|
||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import scikit-learn, please install with `pip install "
|
||
|
"scikit-learn`."
|
||
|
)
|
||
|
|
||
|
tfidf_params = tfidf_params or {}
|
||
|
vectorizer = TfidfVectorizer(**tfidf_params)
|
||
|
tfidf_array = vectorizer.fit_transform(texts)
|
||
|
metadatas = metadatas or ({} for _ in texts)
|
||
|
docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
|
||
|
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array, **kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def from_documents(
|
||
|
cls,
|
||
|
documents: Iterable[Document],
|
||
|
*,
|
||
|
tfidf_params: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> TFIDFRetriever:
|
||
|
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
||
|
return cls.from_texts(
|
||
|
texts=texts, tfidf_params=tfidf_params, metadatas=metadatas, **kwargs
|
||
|
)
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||
|
) -> List[Document]:
|
||
|
from sklearn.metrics.pairwise import cosine_similarity
|
||
|
|
||
|
query_vec = self.vectorizer.transform(
|
||
|
[query]
|
||
|
) # Ip -- (n_docs,x), Op -- (n_docs,n_Feats)
|
||
|
results = cosine_similarity(self.tfidf_array, query_vec).reshape(
|
||
|
(-1,)
|
||
|
) # Op -- (n_docs,1) -- Cosine Sim with each doc
|
||
|
return_docs = [self.docs[i] for i in results.argsort()[-self.k :][::-1]]
|
||
|
return return_docs
|
||
|
|
||
|
def save_local(
|
||
|
self,
|
||
|
folder_path: str,
|
||
|
file_name: str = "tfidf_vectorizer",
|
||
|
) -> None:
|
||
|
try:
|
||
|
import joblib
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import joblib, please install with `pip install joblib`."
|
||
|
)
|
||
|
|
||
|
path = Path(folder_path)
|
||
|
path.mkdir(exist_ok=True, parents=True)
|
||
|
|
||
|
# Save vectorizer with joblib dump.
|
||
|
joblib.dump(self.vectorizer, path / f"{file_name}.joblib")
|
||
|
|
||
|
# Save docs and tfidf array as pickle.
|
||
|
with open(path / f"{file_name}.pkl", "wb") as f:
|
||
|
pickle.dump((self.docs, self.tfidf_array), f)
|
||
|
|
||
|
@classmethod
|
||
|
def load_local(
|
||
|
cls,
|
||
|
folder_path: str,
|
||
|
file_name: str = "tfidf_vectorizer",
|
||
|
) -> TFIDFRetriever:
|
||
|
try:
|
||
|
import joblib
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import joblib, please install with `pip install joblib`."
|
||
|
)
|
||
|
|
||
|
path = Path(folder_path)
|
||
|
|
||
|
# Load vectorizer with joblib load.
|
||
|
vectorizer = joblib.load(path / f"{file_name}.joblib")
|
||
|
|
||
|
# Load docs and tfidf array as pickle.
|
||
|
with open(path / f"{file_name}.pkl", "rb") as f:
|
||
|
docs, tfidf_array = pickle.load(f)
|
||
|
|
||
|
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array)
|