mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
94 lines
2.2 KiB
Plaintext
94 lines
2.2 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "fc0db1bc",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# VectorStore Retriever\n",
|
||
|
"\n",
|
||
|
"The index - and therefor the retriever - that LangChain has the most support for is a VectorStoreRetriever. As the name suggests, this retriever is backed heavily by a VectorStore.\n",
|
||
|
"\n",
|
||
|
"Once you construct a VectorStore, its very easy to construct a retriever. Let's walk through an example."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "5831703b",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.document_loaders import TextLoader\n",
|
||
|
"loader = TextLoader('../../state_of_the_union.txt')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"id": "9fbcc58f",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Running Chroma using direct local API.\n",
|
||
|
"Using DuckDB in-memory for database. Data will be transient.\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
|
"from langchain.vectorstores import Chroma\n",
|
||
|
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||
|
"\n",
|
||
|
"documents = loader.load()\n",
|
||
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||
|
"texts = text_splitter.split_documents(documents)\n",
|
||
|
"embeddings = OpenAIEmbeddings()\n",
|
||
|
"db = Chroma.from_documents(texts, embeddings)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"id": "0cbfb1af",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"retriever = db.as_retriever()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "fc12700b",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|