2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models import LLM
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, PrivateAttr
|
|
|
|
|
|
|
|
|
|
|
|
# Ignoring type because below is valid pydantic code
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
|
|
class Params(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
|
|
"""Parameters for MLflow"""
|
|
|
|
|
|
|
|
temperature: float = 0.0
|
|
|
|
n: int = 1
|
|
|
|
stop: Optional[List[str]] = None
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
|
|
class Mlflow(LLM):
|
|
|
|
"""Wrapper around completions LLMs in MLflow.
|
|
|
|
|
|
|
|
To use, you should have the `mlflow[genai]` python package installed.
|
|
|
|
For more information, see https://mlflow.org/docs/latest/llms/deployments/server.html.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import Mlflow
|
|
|
|
|
|
|
|
completions = Mlflow(
|
|
|
|
target_uri="http://localhost:5000",
|
|
|
|
endpoint="test",
|
Fix `llms.Mlflow` example (#14386)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The example code for `llms.Mlflow` is outdated.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-03 06:35:13 +00:00
|
|
|
temperature=0.1,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
"""
|
|
|
|
|
|
|
|
endpoint: str
|
|
|
|
"""The endpoint to use."""
|
|
|
|
target_uri: str
|
|
|
|
"""The target URI to use."""
|
|
|
|
temperature: float = 0.0
|
|
|
|
"""The sampling temperature."""
|
|
|
|
n: int = 1
|
|
|
|
"""The number of completion choices to generate."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
|
|
"""The stop sequence."""
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
"""The maximum number of tokens to generate."""
|
|
|
|
extra_params: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Any extra parameters to pass to the endpoint."""
|
|
|
|
|
|
|
|
"""Extra parameters such as `temperature`."""
|
|
|
|
_client: Any = PrivateAttr()
|
|
|
|
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
self._validate_uri()
|
|
|
|
try:
|
|
|
|
from mlflow.deployments import get_deploy_client
|
|
|
|
|
|
|
|
self._client = get_deploy_client(self.target_uri)
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError(
|
|
|
|
"Failed to create the client. "
|
|
|
|
"Please run `pip install mlflow[genai]` to install "
|
|
|
|
"required dependencies."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
def _validate_uri(self) -> None:
|
|
|
|
if self.target_uri == "databricks":
|
|
|
|
return
|
|
|
|
allowed = ["http", "https", "databricks"]
|
|
|
|
if urlparse(self.target_uri).scheme not in allowed:
|
|
|
|
raise ValueError(
|
|
|
|
f"Invalid target URI: {self.target_uri}. "
|
|
|
|
f"The scheme must be one of {allowed}."
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
return {
|
|
|
|
"target_uri": self.target_uri,
|
|
|
|
"endpoint": self.endpoint,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"n": self.n,
|
|
|
|
"stop": self.stop,
|
|
|
|
"max_tokens": self.max_tokens,
|
|
|
|
"extra_params": self.extra_params,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
return self._default_params
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
data: Dict[str, Any] = {
|
|
|
|
"prompt": prompt,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"n": self.n,
|
|
|
|
**self.extra_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
if stop := self.stop or stop:
|
|
|
|
data["stop"] = stop
|
|
|
|
if self.max_tokens is not None:
|
|
|
|
data["max_tokens"] = self.max_tokens
|
|
|
|
|
|
|
|
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
|
|
|
return resp["choices"][0]["text"]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
return "mlflow"
|