mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
72 lines
2.3 KiB
Markdown
72 lines
2.3 KiB
Markdown
|
|
||
|
# cohere-librarian
|
||
|
|
||
|
This template turns Cohere into a librarian.
|
||
|
|
||
|
It demonstrates the use of a router to switch between chains that can handle different things: a vector database with Cohere embeddings; a chat bot that has a prompt with some information about the library; and finally a RAG chatbot that has access to the internet.
|
||
|
|
||
|
For a fuller demo of the book recomendation, consider replacing books_with_blurbs.csv with a larger sample from the following dataset: https://www.kaggle.com/datasets/jdobrow/57000-books-with-metadata-and-blurbs/ .
|
||
|
|
||
|
## Environment Setup
|
||
|
|
||
|
Set the `COHERE_API_KEY` environment variable to access the Cohere models.
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
To use this package, you should first have the LangChain CLI installed:
|
||
|
|
||
|
```shell
|
||
|
pip install -U langchain-cli
|
||
|
```
|
||
|
|
||
|
To create a new LangChain project and install this as the only package, you can do:
|
||
|
|
||
|
```shell
|
||
|
langchain app new my-app --package cohere-librarian
|
||
|
```
|
||
|
|
||
|
If you want to add this to an existing project, you can just run:
|
||
|
|
||
|
```shell
|
||
|
langchain app add cohere-librarian
|
||
|
```
|
||
|
|
||
|
And add the following code to your `server.py` file:
|
||
|
```python
|
||
|
from cohere_librarian.chain import chain as cohere_librarian_chain
|
||
|
|
||
|
add_routes(app, cohere_librarian_chain, path="/cohere-librarian")
|
||
|
```
|
||
|
|
||
|
(Optional) Let's now configure LangSmith.
|
||
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
||
|
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||
|
If you don't have access, you can skip this section
|
||
|
|
||
|
|
||
|
```shell
|
||
|
export LANGCHAIN_TRACING_V2=true
|
||
|
export LANGCHAIN_API_KEY=<your-api-key>
|
||
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||
|
```
|
||
|
|
||
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||
|
|
||
|
```shell
|
||
|
langchain serve
|
||
|
```
|
||
|
|
||
|
This will start the FastAPI app with a server is running locally at
|
||
|
[http://localhost:8000](http://localhost:8000)
|
||
|
|
||
|
We can see all templates at [http://localhost:8000/docs](http://localhost:8000/docs)
|
||
|
We can access the playground at [http://localhost:8000/cohere-librarian/playground](http://localhost:8000/cohere-librarian/playground)
|
||
|
|
||
|
We can access the template from code with:
|
||
|
|
||
|
```python
|
||
|
from langserve.client import RemoteRunnable
|
||
|
|
||
|
runnable = RemoteRunnable("http://localhost:8000/cohere-librarian")
|
||
|
```
|